交叉熵损失函数 熵的本质是香浓信息量\(\log(\frac{1}{p})\)的期望 既然熵的本质是香浓信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...
.Cross entropy 交叉熵损失函数用于二分类损失函数的计算,其公式为: 其中y为真值,y 为估计值.当真值y为 时, 函数图形: 可见此时y 越接近 损失函数的值越小,越接近 损失函数的值越大. 当真值y为 时, 函数图形: 可见此时y 越接近 损失函数的值越小,越接近 损失函数的值越大. .Binary crossentropy Binary crossentropy为二分类的交叉熵 ...
2019-07-28 17:26 0 5788 推荐指数:
交叉熵损失函数 熵的本质是香浓信息量\(\log(\frac{1}{p})\)的期望 既然熵的本质是香浓信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...
交叉熵损失函数的概念和理解 觉得有用的话,欢迎一起讨论相互学习~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定义 ...
损失函数:交叉熵 交叉熵用于比较两个不同概率模型之间的距离。即先把模型转换成熵这个数值,然后通过数值去定量的比较两个模型之间的差异。 信息量 信息量用来衡量事件的不确定性,即该事件从不确定转为确定时的难度有多大。 定义信息量的函数为: \[f(x):=\text{信息量 ...
交叉熵损失是分类任务中的常用损失函数,但是是否注意到二分类与多分类情况下的交叉熵形式上的不同呢? 两种形式 这两个都是交叉熵损失函数,但是看起来长的却有天壤之别。为什么同是交叉熵损失函数,长的却不一样? 因为这两个交叉熵损失函数对应不同的最后一层的输出:第一个对应的最后一层 ...
【简介】 交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。语言模型的性能通常用交叉熵和复杂度(perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义 ...
1.MSE(均方误差) MSE是指真实值与预测值(估计值)差平方的期望,计算公式如下: MSE = 1/m (Σ(ym-y'm)2),所得结果越大,表明预测效果越差,即y和y'相差越大 2.Cross Entropy Loss(交叉熵) 在理解交叉熵之前 ...
交叉熵 分类问题中,预测结果是(或可以转化成)输入样本属于n个不同分类的对应概率。比如对于一个4分类问题,期望输出应该为 g0=[0,1,0,0] ,实际输出为 g1=[0.2,0.4,0.4,0] ,计算g1与g0之间的差异所使用的方法,就是损失函数,分类问题中常用损失函数是交叉熵。 交叉 ...
Cross Entropy Loss Function(交叉熵损失函数) 例子 表达式 函数性质 学习过程 优缺点 这篇文章中,讨论的Cross Entropy损失函数常用于分类问题中,但是为什么它会在分类问题中这么有效呢?我们先从一个简单的分类例子来入手 ...