原文:R语言代写:EM算法和高斯混合模型的实现

原文 :http: tecdat.cn p 本文我们讨论期望最大化理论,应用和评估基于期望最大化的聚类。 软件包 install.packages mclust require mclust Loading required package: mclust Package mclust version . Type citation mclust for citing this R package ...

2019-07-27 11:50 0 387 推荐指数:

查看详情

高斯混合模型EM算法

对于高斯混合模型是干什么的呢?它解决什么样的问题呢?它常用在非监督学习中,意思就是我们的训练样本集合只有数据,没有标签。 它用来解决这样的问题:我们有一堆的训练样本,这些样本可以一共分为K类,用z(i)表示。,但是具体样本属于哪类我们并不知道,现在我们需要建立一个模型来描述这个训练样本的分布 ...

Mon Dec 05 07:06:00 CST 2016 0 1357
4. EM算法-高斯混合模型GMM详细代码实现

1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM的前3篇博文分别从数学基础、EM通用算法原理、EM高斯混合模型的角度介绍了EM算法 ...

Wed Jan 16 07:37:00 CST 2019 0 3727
高斯混合模型GMM与EM算法的Python实现

GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计。 1. 高斯混合模型(Gaussian Mixture models, GMM) 高斯混合模型(Gaussian Mixture Model ...

Sat Jun 08 01:09:00 CST 2019 0 664
EM 算法求解高斯混合模型python实现

注:本文是对《统计学习方法》EM算法的一个简单总结。 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量。如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用 ...

Mon Nov 13 18:52:00 CST 2017 4 7557
混合高斯模型(Mixtures of Gaussians)和EM算法

混合高斯模型(Mixtures of Gaussians)和EM算法 主要内容: 1、 概率论预备知识 2、 单高斯模型 3、 混合高斯模型 4、 EM算法 5、 K-means聚类算法 一、概率论预备知识 1、 数学期望/均值、方差/标准差 设离散型随机变量X ...

Sat May 17 02:40:00 CST 2014 1 16375
EM算法高斯混合模型GMM介绍

EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{1}\right)$转换为更加易于计算的$\sum_{i=1}^{n} \ln p\left ...

Fri Jun 21 06:41:00 CST 2019 0 555
EM算法原理以及高斯混合模型实践

EM算法有很多的应用: 最广泛的就是GMM混合高斯模型、聚类、HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然函数估计值的一般步骤: (1)写出似然函数; (2)对似然函数取对数,并整理 ...

Sun Jan 08 19:00:00 CST 2017 0 3777
聚类之高斯混合模型EM算法

一、高斯混合模型概述 1、公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一个高斯分布的权重。Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为θk=(μk, αk2),概率密度的表达式为: 高斯混合模型就是K个高斯 ...

Sun May 12 22:16:00 CST 2019 0 3359
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM