对于Transformer模型的positional encoding,最初在Attention is all you need的文章中提出的是进行绝对位置编码,之后Shaw在2018年的文章中提出了相对位置编码,就是本篇blog所介绍的算法RPR;2019年的Transformer-XL针对 ...
. Motivation 在Transformer XL中,由于设计了segments,如果仍采用transformer模型中的绝对位置编码的话,将不能区分处不同segments内同样相对位置的词的先后顺序。 比如对于 segment i 的第k个token,和 segment j 的第k个token的绝对位置编码是完全相同的。 鉴于这样的问题,transformer XL中采用了相对位置编码。 ...
2019-07-26 19:51 0 3619 推荐指数:
对于Transformer模型的positional encoding,最初在Attention is all you need的文章中提出的是进行绝对位置编码,之后Shaw在2018年的文章中提出了相对位置编码,就是本篇blog所介绍的算法RPR;2019年的Transformer-XL针对 ...
目录 背景 vanilla Transformer Transformer-XL解析 总结 一句话简介:Transformer-XL架构在vanilla Transformer的基础上引入了两点创新:循环机制(Recurrence Mechanism)和相对位置 ...
。为解决长距离依赖问题,Google Brain提出了Transformer-XL模型(XL是extra l ...
本篇带来XL-Net和它的基础结构Transformer-XL。在讲解XL-Net之前需要先了解Transformer-XL,Transformer-XL不属于预训练模型范畴,而是Transformer的扩展版,旨在解决Transformer的捕获长距离依赖信息的上限问题。接下来我们详细的介绍 ...
前言 在计算机视觉中,相对位置编码的有效性还没有得到很好的研究,甚至仍然存在争议,本文分析了相对位置编码中的几个关键因素,提出了一种新的针对2D图像的相对位置编码方法,称为图像RPE(IRPE)。 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉 ...
这一章我们主要关注transformer在序列标注任务上的应用,作为2017年后最热的模型结构之一,在序列标注任务上原生transformer的表现并不尽如人意,效果比bilstm还要差不少,这背后有哪些原因? 解决这些问题后在NER任务上transformer的效果如何?完整代码详见 ...
的本质 7. Transformer-XL原理介绍 1. 前言 2017年6月,Google Br ...
目录 引言 动机 解决方案 概览 注释 实现 高效实现 结果 结论 参考文献 本文翻译自How Self-Attention with Relative Position ...