目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT ...
预训练 先在某个任务 训练集A或者B 进行预先训练,即先在这个任务 训练集A或者B 学习网络参数,然后存起来以备后用。当我们在面临第三个任务时,网络可以采取相同的结构,在较浅的几层,网络参数可以直接加载训练集A或者B训练好的参数,其他高层仍然随机初始化。底层参数有两种方式:frozen,即预训练的参数固定不变,fine tuning,即根据现在的任务调整预训练的参数。 优势: 当前任务数据量少,难 ...
2019-07-20 22:28 0 2266 推荐指数:
目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT ...
自然语言处理中的语言模型预训练方法(ELMo、GPT和BERT) 最近,在自然语言处理(NLP)领域中,使用语言模型预训练方法在多项NLP任务上都获得了不错的提升,广泛受到了各界的关注。就此,我将最近看的一些相关论文进行总结,选取了几个代表性模型(包括ELMo [1],OpenAI GPT ...
Contextualized Word Embedding 同样的单词有不同的意思,比如下面的几个句子,同样有 “bank” ,却有着不同的意思。但是用训练出来的 Word2Vec 得到 “bank” 的向量会是一样的。向量一样说明 “word” 的意思是一样的,事实上并不是如此。这是 ...
word2vec的基础知识介绍参考上一篇博客和列举的参考资料。 首先利用安装gensim模块,相关依赖如下,注意版本要一致: Python >= 2.7 (tested with versions 2.7, 3.5 and 3.6) NumPy >= 1.11.3 ...
自然语言处理的第一步就是获取词向量,获取词向量的方法总体可以分为两种两种,一个是基于统计方法的,一种是基于语言模型的。 1 Glove - 基于统计方法 Glove是一个典型的基 ...
下载的欲训练模型给 tensorflow 用,需要在行首标记模型的两个参数, 使用 gensim工具可以完成,安装这个包以后,执行以下代码. ...
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 ...
gensim intro doc | doc ZH Gensim是一个免费的 Python库,旨在从文档中自动提取语义主题,尽可能高效(计算机方面)和 painlessly(人性化)。 Gensim旨在处理原始的非结构化数字文本(纯文本)。 在Gensim的算法,比如Word2Vec ...