原文:TensorFlow神经网络机器学习使用详细教程,此贴会更新!!!

运行 TensorFlow打开一个 python 终端: 使用 TensorFlow, 你必须明白 TensorFlow: 使用图 graph 来表示计算任务. 在被称之为 会话 Session 的上下文 context 中执行图. 使用 tensor 表示数据. 通过 变量 Variable 维护状态. 使用 feed 和 fetch 为任意操作输入和输出数据. 综述TensorFlow 是一个 ...

2017-11-20 15:12 0 1760 推荐指数:

查看详情

机器学习Tensorflow(4)——卷积神经网络tensorflow实现

1.标准卷积神经网络 标准的卷积神经网络由输入层、卷积层(convolutional layer)、下采样层(downsampling layer)、全连接层(fully—connected layer)和输出层构成。 卷积层也称为检测层 下采样层也称为池化层(pooling ...

Thu Dec 27 19:12:00 CST 2018 3 544
机器学习:python使用BP神经网络示例

1.简介(只是简单介绍下理论内容帮助理解下面的代码,如果自己写代码实现此理论不够) 1) BP神经网络是一种多层网络算法,其核心是反向传播误差,即: 使用梯度下降法(或其他算法),通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。 BP神经网络模型拓扑 ...

Tue May 16 23:12:00 CST 2017 0 3334
机器学习——神经网络

###神经网络基础概念 人工神经网络又叫神经网络,是借鉴了生物神经网络的工作原理形成的一种数学模型。神经网络机器学习诸多算法中的一种,它既可以用来做有监督的任务,如分类、视觉识别等,也可以用作无监督的任务。同时它能够处理复杂的非线性问题,它的基本结构是神经元,如下图所示: 其中,x1 ...

Tue Jun 26 06:46:00 CST 2018 0 7865
机器学习之路: 深度学习 tensorflow 神经网络优化算法 学习率的设置

神经网络中,广泛的使用反向传播和梯度下降算法调整神经网络中参数的取值。 梯度下降和学习率:   假设用 θ 来表示神经网络中的参数, J(θ) 表示在给定参数下训练数据集上损失函数的大小。   那么整个优化过程就是寻找一个参数θ, 使得J(θ) 的值 ...

Fri Jun 08 00:31:00 CST 2018 0 942
机器学习Tensorflow(5)——循环神经网络、长短时记忆网络

1.循环神经网络的标准模型 前馈神经网络能够用来建立数据之间的映射关系,但是不能用来分析过去信号的时间依赖关系,而且要求输入样本的长度固定 循环神经网络是一种在前馈神经网络中增加了分亏链接的神经网络,能够产生对过去数据的记忆状态,所以可以用于对序列数据的处理,并建立不同时段 ...

Sun Jan 06 21:29:00 CST 2019 1 941
TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归

上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出。 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量存在几次方的分量,所以我们采用一个神经网络去定义一个函数。 我们假设 ...

Fri Dec 24 19:39:00 CST 2021 10 1937
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM