一、关于RNN的梯度消失&爆炸问题 1. 关于RNN结构 循环神经网络RNN(Recurrent Neural Network)是用于处理序列数据的一种神经网络,已经在自然语言处理中被广泛应用。下图为经典RNN结构: 2. 关于RNN前向传播 RNN前向传导公式 ...
我们给定一个三个时间的RNN单元,如下: 我们假设最左端的输入为给定值, 且神经元中没有激活函数 便于分析 , 则前向过程如下: 在时刻, 损失函数为,那么如果我们要训练RNN时, 实际上就是是对求偏导, 并不断调整它们以使得尽可能达到最小 参见反向传播算法与梯度下降算法 。 那么我们得到以下公式: 将上述偏导公式与第三节中的公式比较,我们发现, 随着神经网络层数的加深对而言并没有什么影响, 而对 ...
2019-07-09 19:13 2 675 推荐指数:
一、关于RNN的梯度消失&爆炸问题 1. 关于RNN结构 循环神经网络RNN(Recurrent Neural Network)是用于处理序列数据的一种神经网络,已经在自然语言处理中被广泛应用。下图为经典RNN结构: 2. 关于RNN前向传播 RNN前向传导公式 ...
问题描述 先来看看问题描述。 当我们使用sigmoid funciton 作为激活函数时,随着神经网络hidden layer层数的增加,训练误差反而加大了,如上图所示。 下面以2层隐藏层神经网络为例,进行说明。 结点中的柱状图表示每个神经元参数的更新速率(梯度)大小,有图中 ...
一、现象介绍 靠近输出层的hidden layer 梯度大,参数更新快,所以很快就会收敛; 而靠近输入层的hidden layer 梯度小,参数更新慢,几乎就和初始状态一样,随机分布。 这种现象就是梯度弥散(vanishing gradient problem)。 而在另一种情况中,前面 ...
梯度弥散和梯度爆炸 rnn在向w求梯度的过程中,有一项Whh的k次方。这一项会出现问题。Whh>1会趋向无穷,梯度非常非常大(梯度爆炸)。Whh<1会趋向0,梯度非常非常小(梯度弥散)。到一定的值时梯度剧烈变化。 梯度爆炸的解决办法 设定阈值,当梯度大于某个数的时候,所取 ...
RNN梯度消失和爆炸的原因 经典的RNN结构如下图所示: 假设我们的时间序列只有三段, 为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下: 假设在t=3时刻,损失函数为 。 则对于一次训练任务的损失函数为 ,即每一时刻损失值的累加 ...
靠近输入的神经元会比靠近输出的神经元的梯度成指数级衰减 靠近输出层的hidden layer 梯度大,参数更新快,所以很快就会收敛; 而靠近输入层的hidden layer 梯度小,参数更新慢,几乎就和初始状态一样,随机分布。 这种现象就是梯度弥散(vanishing gradient ...
写在最前面,感谢这两篇文章,基本上的框架是从这两篇文章中得到的: https://zhuanlan.zhihu.com/p/28687529 https://zhuanlan.zhihu.com/ ...
1RNN为什么会有梯度消失问题 (1)沿时间反向方向:t-n时刻梯度=t时刻梯度* π(W*激活函数的导数) (2)沿隐层方向方向:l-n层的梯度=l层的梯度*π(U*激活函数的导数) 所以激活函数的导数和W连乘可以造成梯度 ...