XGBoost原理介绍 1. 什么是XGBoost XGBoost是一个开源机器学习项目,实现了GBDT算法,进行了算法和工程上的许多改进,广泛应用在Kaggle竞赛及许多机器学习竞赛中。 说到XGBoost,不得不提GBDT(Gradient Boosting Decision Tree ...
XGBoost 的设置有三种参数:一般参数,提升参数和学习参数。 一般参数 取决于提升器,通常是树或线性模型提升参数 取决于选择的提升器的相关参数学习参数 取决于指定学习任务和相应的学习目标一般参数 general parameters booster:选择提升器,默认是 treesilent:是否打印信息,默认是 不打印nthread:线程数,默认为最大可用线程数num pbuffer:缓冲区大 ...
2019-07-08 23:14 0 935 推荐指数:
XGBoost原理介绍 1. 什么是XGBoost XGBoost是一个开源机器学习项目,实现了GBDT算法,进行了算法和工程上的许多改进,广泛应用在Kaggle竞赛及许多机器学习竞赛中。 说到XGBoost,不得不提GBDT(Gradient Boosting Decision Tree ...
一、XGBoost参数 xgboost参数可以分为三种类型:通用参数、booster参数以及学习目标参数 General parameters:参数控制在提升(boosting)过程中使用哪种booster,常用的booster有树模型(tree)和线性模型(linear model ...
常规参数General Parameters booster[default=gbtree]:选择基分类器,可以是:gbtree,gblinear或者dart。gbtree和draf基于树模型,而gblinear基于线性模型。 slient[default=0]:是否有运行信息输出 ...
XGBoost参数调优 http://blog.csdn.net/hhy518518/article/details/54988024 摘要: 转载:http://blog.csdn.NET/han_xiaoyang/article/details/52665396 1. 简介 ...
转自:https://segmentfault.com/a/1190000014040317 整体: 1.调节最大迭代次数n_estimators 2.调试的参数是min_child_weight以及max_depth: 3.调试参数 ...
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本 ...
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些 ...
原文链接:https://blog.csdn.net/m_buddy/article/details/79337492 前言本文中针对XGBoost的参数说明进行部分翻译得来,原文链接。因而本文中只对一些关键参数进行了翻译,且由于本人能力有限,文中难免存在错误的地方,还望指正。以下是大致翻译内容 ...