摘要:在随机森林之Bagging法中可以发现Bootstrap每次约有1/3的样本不会出现在Bootstrap所采集的样本集合中,当然也就没有参加决策树的建立,那是不是意味着就没有用了呢,答案是否定的。我们把这1/3的数据称为袋外数据oob(out of bag),它可以用于取代测试集误差估计方法 ...
随机森林有一个重要的优点就是,没有必要对它进行交叉验证或者用一个独立的测试集来获得误差的一个无偏估计。它可以在内部进行评估,也就是说在生成的过程中就可以对误差建立一个无偏估计。 随机森林在生成每颗决策树时,会随机且有放回的抽取样本,每棵决策树会有大概 的样本未抽取到,这些样本就是每棵树的oob样本。具体计算过程如下: 根据这种特点,我们可以对其进行oob估计,步骤如下: 计算决策树对其对应的oob ...
2019-07-08 11:58 0 1519 推荐指数:
摘要:在随机森林之Bagging法中可以发现Bootstrap每次约有1/3的样本不会出现在Bootstrap所采集的样本集合中,当然也就没有参加决策树的建立,那是不是意味着就没有用了呢,答案是否定的。我们把这1/3的数据称为袋外数据oob(out of bag),它可以用于取代测试集误差估计方法 ...
随机森林之oob error 估计 摘要:在随机森林之Bagging法中可以发现Bootstrap每次约有1/3的样本不会出现在Bootstrap所采集的样本集合中,当然也就没有参加决策树的建立,那是不是意味着就没有用了呢,答案是否定的。我们把这1/3的数据称为袋外数据 ...
本文参考以及图片来源Transformer详解 首先假设我们有序列 x1、x2、x3 和 x4 这四个序列,首先我们进行一次权重的乘法 \({a^i} = W{x^i}\) ,得到新的序列 a1、a ...
DFT计算过程详解 平时工作中,我们在计算傅里叶变换时,通常会直接调用Matlab中的FFT函数,或者是其他编程语言中已经为我们封装好的函数,很少去探究具体的计算过程,本文以一个具体的例子,向你一步一步展示DFT的计算过程。 众所周知,傅里叶变换的计算公式为: 对时域信号进行离散化 ...
Sklearn RandomForest算法(有监督学习),可以根据输入数据,选择最佳特征组合,减少特征冗余; 原理:由于随机决策树生成过程采用的Boostrap,所以在一棵树的生成过程并不会使用所有的样本,未使用的样本就叫(Out_of_bag)袋外样本,通过袋外样本,可以评估这个树的准确度 ...
3d模型经过世界坐标变换、相机坐标变换后,下一步需要投影变换。投影变换的目的就是要把相机空间转换到标准视图空间,在这个空间的坐标都是正规化的,也就是坐标范围都在[-1,1]之间,之所以转换到这个空 ...
https://blog.csdn.net/ligang_csdn/article/details/53838743 https://blog.csdn.net/weixin_30014549/ar ...