嵌入式特征选择在学习器训练过程中自动地进行特征选择。嵌入式选择最常用的是L1正则化与L2正则化。 SelectFromModel是一个元变压器,可与拟合后具有coef_或feature_importances_属性的任何估算器一起使用。如果相应的coef_ ...
一 正则化 .L Lasso L 正则方法具有稀疏解的特性,因此天然具备特征选择的特性,但是要注意,L 没有选到的特征不代表不重要,原因是两个具有高相关性的特征可能只保留了一个,如果要确定哪个特征重要应再通过L 正则方法交叉检验。 举例:下面的例子在波士顿房价数据上运行了Lasso,其中参数alpha是通过grid search进行优化 from sklearn.linear model impo ...
2019-07-01 10:44 0 437 推荐指数:
嵌入式特征选择在学习器训练过程中自动地进行特征选择。嵌入式选择最常用的是L1正则化与L2正则化。 SelectFromModel是一个元变压器,可与拟合后具有coef_或feature_importances_属性的任何估算器一起使用。如果相应的coef_ ...
3.2 Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树 ...
https://blog.csdn.net/xiezhen_zheng/article/details/82011908 参考:特征筛选方法 https://blog.csdn.net/m0_37316673/article/details/107524247 ...
原创博文,转载请注明出处! 嵌入式特征选择法使用机器学习模型进行特征选择。特征选择过程与学习器相关,特征选择过程与学习器训练过程融合,在学习器训练过程中自动进行特征选择。 通过L1正则化来选择特征 sklearn在feature_selection模块中集 ...
原创博文,转载请注明出处! 包裹式特征选择法的特征选择过程与学习器相关,使用学习器的性能作为特征选择的评价准则,选择最有利于学习器性能的特征子集。常用的包裹式特征选择法有递归特征消除法RFE。 # 递归特征消除法 递归特征消除法RFE 递归特征消除法的英文全名 ...
# 过滤式特征选择法的原理 使用发散性或相关性指标对各个特征进行评分,选择分数大于阈值的特征或者选择前K个分数最大的特征。具体来说,计算每个特征的发散性,移除发散性小于阈值的特征/选择前k个分数最大的特征;计算每个特征与标签的相关性,移除相关性小于阈值的特征/选择前k个分数 ...
数据分析的流程: 1 特征选择 2 模型、算法 3 评价指标 怎么做整理:一是从项目中,做一个项目总结一个方法;二是平常最常用的。 会飞的蜗牛: https://www.cnblogs.com/stevenlk/p/6543628.html#41-%E5%9F%BA%E4%BA ...
基于模型刷选特征方法有:排列重要性、shap value、null importance 这里简单介绍一下排列重要性: 一、排列重要性原理 首先建立一个模型,计算某列特征重要性时,打乱该列顺序,其余列不变,然后再使用打乱后的数据来预测,最后计算正确率;如果某列对模型预测很重要,那么打乱该列 ...