损失函数 总损失定义为: yi为第i个训练样本的真实值 h(xi)为第i个训练样本特征值组合预测函数 又称最小二乘法 正规方程 理解:X为特征值矩阵,y为目标值矩阵。直接求到最好的结果 缺点:当特征过多过复杂时,求解速度太慢并且得不到 ...
转自:https: blog.csdn.net javaisnotgood article details Logistic回归cost函数的推导过程。算法求解使用如下的cost函数形式: 梯度下降算法 对于一个函数,我们要找它的最小值,有多种算法,这里我们选择比较容易用代码实现和符合机器学习步骤的梯度下降算法。 先来看看梯度下降算法中,自变量的迭代过程。表示如下 可以看到,这是一个 值不断迭代的 ...
2019-06-26 14:50 0 465 推荐指数:
损失函数 总损失定义为: yi为第i个训练样本的真实值 h(xi)为第i个训练样本特征值组合预测函数 又称最小二乘法 正规方程 理解:X为特征值矩阵,y为目标值矩阵。直接求到最好的结果 缺点:当特征过多过复杂时,求解速度太慢并且得不到 ...
什么是损失函数 损失函数(Loss Function)也称代价函数(Cost Function),用来度量预测值与实际值之间的差异 公式: 其中E即使损失函数,y表示真实值,y'表示预测值,损失函数即使预测值与实际值之间的差 损失函数的作用 度量决策函数内f(x)和实际值 ...
先来回顾一下梯度下降法的参数更新公式: (其中,α是学习速率,是梯度) 这个公式是怎么来的呢?下面进行推导: 首先,如果一个函数 n 阶可导,那么我们可以用多项式仿造一个相似的函数,这就是泰勒展开式。其在a点处的表达式如下: 可以看出,随着式子的展开,这个展 ...
的病人,你只能知道他3个月后到底是病危或者存活。所以线性回归并不适用这种场景。 logistic函数 ...
最近学习Logistic回归算法,在网上看了许多博文,笔者觉得这篇文章http://blog.kamidox.com/logistic-regression.html写得最好。但其中有个关键问题没有讲清楚:为什么选择-log(h(x))作为成本函数(也叫损失函数)。 和线性回归算法相比,逻辑回归 ...
前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程。接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点在某一个特征上的值,即特征向量x的某个值 ...
就越好。 我们训练模型的过程,就是通过不断的迭代计算,使用梯度下降的优化算法,使得损失函数越来越小。损失 ...
一、线性模型预测一个样本的损失量 损失量:模型对样本的预测结果和该样本对应的实际结果的差距; 1)为什么会想到用 y = -log(x) 函数? (该函数称为 惩罚函数:预测结果与实际值的偏差越大,惩罚越大) y = 1(p ≥ 0.5)时 ...