概述 优化问题就是在给定限制条件下寻找目标函数\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的极值点。极值可以分为整体极值或局部极值,整 ...
梯度下降法是沿着梯度下降的算法,该算法的收敛速度受梯度大小影响非常大,当梯度小时算法收敛速度非常慢。 牛顿法是通过把目标函数做二阶泰勒展开,通过求解这个近似方程来得到迭代公式,牛顿法的迭代公式中用到了二阶导数来做指导,所以牛顿法的收敛速度很快,但是由于要求二阶导,所以牛顿法的时间复杂度非常高。 拟牛顿法通过用正定矩阵来近似海赛矩阵来减少时间复杂度同时又保存了很高的收敛速度 ...
2019-06-24 22:10 0 627 推荐指数:
概述 优化问题就是在给定限制条件下寻找目标函数\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的极值点。极值可以分为整体极值或局部极值,整 ...
我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素 ...
目录 梯度下降法 机器学习中的梯度下降法 最速下降法 二次型目标函数 牛顿法 Levenberg-Marquardt 修正 梯度下降法和牛顿法谁快? 共轭方向法 ...
拟牛顿法 拟牛顿法是求解非线性优化问题最有效的方法之一。DFP、BFGS、L-BFGS算法都是重要的拟牛顿法。 求函数的根 对f(x)在Xn附近做一阶泰勒展开 f(x)=f(Xn)+f’(Xn)(x-Xn) 假设Xn+1是该方程的根 那么就得到 Xn+1=Xn-f(Xn)/f ...
假设有一个可导函数f(x),我们的目标函数是求解最小值$min\frac{1}{2}f(x)^{2}$,假设x给定的初始值是$x_0$ 1、梯度下降法 将f(x)在$x_0$处进行1阶泰勒级数展开:$f(x)=f(x_0)+f(x_0)^{'}(x-x_0)$。 则我们的目标函数变成 ...
2019年01月05日 15:48:32 IT界的小小小学生 阅读数:31 标签: xgb gbdt 梯度下降法 牛顿法 xgboost原理 更多 个人分类: data mining 深度学习 ...
机器学习的本质是建立优化模型,通过优化方法,不断迭代参数向量,找到使目标函数最优的参数向量。最终建立模型 通常用到的优化方法:梯度下降方法、牛顿法、拟牛顿法等。这些优化方法的本质就是在更新参数。 一、梯度下降法 0、梯度下降的思想 · 通过搜索方向和步长来对参数进行更新。其中搜索 ...
参考知乎:https://www.zhihu.com/question/19723347 这篇博文讲牛顿法讲的非常好:http://blog.csdn.net/itplus/article/details/21896453 梯度下降法 ...