引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值;对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解。拉格朗日求得的并不一定是最优解,只有在凸优化的情况下,才能保证 ...
目录 将有约束问题转化为无约束问题 . 拉格朗日法 . . KKT条件 . . 拉格朗日法更新方程 . . 凸优化问题下的拉格朗日法 . 罚函数法 对梯度算法进行修改,使其运用在有约束条件下 . 投影法 . . 梯度下降法 to 投影梯度法 . . 正交投影算子 References 相关博客 梯度下降法 最速下降法 牛顿法等迭代求解方法,都是在无约束的条件下使用的,而在有约束的问题中,直接使用 ...
2019-06-24 20:14 0 2510 推荐指数:
引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值;对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解。拉格朗日求得的并不一定是最优解,只有在凸优化的情况下,才能保证 ...
拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题。他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题。 其中,利用拉格朗日乘子法主要解决的问题为: 等式的约束条件和不等式的条件约束。 拉格朗日乘子的背后的数学意义 ...
解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报 分类: 模式识别&机器学习(42 ...
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 ...
0 前言 上”最优化“课,老师讲到了无约束优化的拉格朗日乘子法和KKT条件。 这个在SVM的推导中有用到,所以查资料加深一下理解。 1 无约束优化 对于无约束优化问题中,如果一个函数f是凸函数,那么可以直接通过f(x)的梯度等于0来求得全局极小值点。 为了避免陷入局部最优,人们尽可 ...
1 等式约束优化问题 等式约束问题如下: 求解方法包括:消元法、拉格朗日乘子法。 1、消元法 通过等式约束条件消去一个变量,得到其他变量关于该变量的表达式代入目标函数,转化为无约束的极值 ...
中的拉格朗日乘子法、KKT条件和对偶问题,所以本篇先作个铺垫。 大部分机器学习算法最后都可归结为最优化问题。 ...
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上。 1.基于最大间隔分隔数据 几个概念: 1.线性可分 ...