Softmax function Softmax 函数 \(y=[y_1,\cdots,y_m]\) 定义如下: \[y_i=\frac{exp(z_i)}{\sum\limits_{j=1 ...
negative log likelihood文章目录negative log likelihood似然函数 likelihood function OverviewDefinition离散型概率分布 Discrete probability distributions 连续型概率分布 Continuous probability distributions 最大似然估计 Maximum Like ...
2019-06-21 15:51 0 3124 推荐指数:
Softmax function Softmax 函数 \(y=[y_1,\cdots,y_m]\) 定义如下: \[y_i=\frac{exp(z_i)}{\sum\limits_{j=1 ...
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/log-likelihood_distance.html 本文是“挑子”在学习对数似然距离过程中的笔记摘录,文中不乏一些个人理解,不当之处望多加指正。 对数似然距离是基于统计理论的一种 ...
二次代价函数 $C = \frac{1} {2n} \sum_{x_1,...x_n} \|y(x)-a^L(x) \|^2$ 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示 ...
知乎上关于似然的一个问题:https://www.zhihu.com/question/54082000 概率(密度)表达给定下样本随机向量的可能性,而似然表达了给定样本下参数(相对于另外的参数)为真实值的可能性。 http://www.cnblogs.com/zhsuiy/p ...
https://blog.csdn.net/songyu0120/article/details/85059149 ...
W3C规范在介绍margin时有这样一句话: Negative values for margin properties are allowed, but there may be implementation-specific limits. 于是,聪明的开发者们就发现了很多负边距 ...
参考:Fitting a Model by Maximum Likelihood 最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定了数据集,所以该函数就是以模型参数为自变量的函数,通过求导我们就能得到使得该函数值(似然值)最大 ...
似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)是一个非常重要的内容,在非正式场合似然和概率 ...