一 前言 假如有一个15亿用户的系统,每天有几亿用户访问系统,要如何快速判断是否为系统中的用户呢? 方法一,将15亿用户存储在数据库中,每次用户访问系统,都到数据库进行查询判断,准确性高,但 ...
布隆过滤器解决 面试题: 如何建立一个十亿级别的哈希表,限制内存空间 如何快速查询一个 亿大小的集合中的元素是否存在 如题 布隆过滤器确实很神奇, 简单来说就是通过多次hash将key存进一个集合中,可以灰常快速地在数亿级的数据中快速查找 实现布隆过滤器需要用bit位存储的数组, 千万别用int ,毕竟一个int整形占 位,一个int bit 但是Java没有bit, 那用byte吧,一个byte ...
2019-06-20 09:51 0 455 推荐指数:
一 前言 假如有一个15亿用户的系统,每天有几亿用户访问系统,要如何快速判断是否为系统中的用户呢? 方法一,将15亿用户存储在数据库中,每次用户访问系统,都到数据库进行查询判断,准确性高,但 ...
介绍: 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。 应用例子 ...
1 位图(BitMap) 在讨论布隆过滤器之前,先看一下位图是什么。 首先考虑一个问题场景 假如需要过滤某些不安全网页,现有100亿个黑名单页面,每个网页的URL最多占用64字节。现要设计一种网页过滤系统,可以根据网页的URL判断该网页是否在黑名单上。 最直观的想法必然是使用一个 ...
Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找 ...
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等。 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否 ...
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。 这个问题的本质在于判断一个元素是否在一个集合中。哈 ...
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中。和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一个标志,用来判断key是否在集合中。 算法: 1. 首先需要k个hash函数,每个函数 ...
Hash算法在应用中又称为指纹(fingerprint)或者摘要(digest)算法,是一种将任意长度的明文串映射为较短的数据串(hash值)的算法,目前的Hash算法主要是MD5系列算法与SHA ...