1. 前言 在NLP中有几个经典的序列标注问题,词性标注(POS),chunking和命名实体识别(NER)。序列标注器的输出可用于另外的应用程序。例如,可以利用在用户搜索查询上训练的命名实体识别器来识别关键词,从而触发某些产品广告。另一个例子是搜索引擎可以使用这种标签信息来查找相关的网页 ...
.CRF 的详细解析 完成的是学习和解码的过程:训练即为学习的过程,预测即为解码的过程。 模板的解析: 具体参考hanlp提供的: http: www.hankcs.com nlp the crf model format description.html Unigram和Bigram模板分别生成CRF的状态特征函数和转移特征函数。其中是标签,x是观测序列,i是当前节点位置。每个函数还有一个权值 ...
2019-06-18 23:20 0 2531 推荐指数:
1. 前言 在NLP中有几个经典的序列标注问题,词性标注(POS),chunking和命名实体识别(NER)。序列标注器的输出可用于另外的应用程序。例如,可以利用在用户搜索查询上训练的命名实体识别器来识别关键词,从而触发某些产品广告。另一个例子是搜索引擎可以使用这种标签信息来查找相关的网页 ...
三个月之前 NLP 课程结课,我们做的是命名实体识别的实验。在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练NER模型,识别人名、地名和组织机构名。尝试了两种模型:一种是手工定义特征模板后再用 ...
简介 序列标注(Sequence Tagging)是一个比较简单的NLP任务,但也可以称作是最基础的任务。序列标注的涵盖范围是非常广泛的,可用于解决一系列对字符进行分类的问题,如分词、词性标注、命名实体识别、关系抽取等等。 有很多开源的中文分词工具,jieba、pkuseg ...
一、模型框架图 二、分层介绍 1)ALBERT层 albert是以单个汉字作为输入的(本次配置最大为128个,短句做padding),两边分别加上开始标识CLS和结束标识SEP,输出的是 ...
CRF 许多随机变量组成一个无向图G = {V, E},V代表顶点,E代表顶点间相连的边, 每个顶点代表一个随机变量,边代表两个随机变量间存在相互影响关系(变量非独立), 如果随机变量根据图的结构而具有对应的条件独立性, 具体来说,两个没有边连接随机变量V1、V2,在其它随机变量O都确定 ...
介绍 数据 快速开始 模块 ...
背景介绍 在平时的NLP任务中,我们经常用到命名实体识别(NER),常用的识别实体类型为人名、地名、组织机构名,但是我们往往也会有识别其它实体的需求,比如时间、品牌名等。在利用算法做实体识别的时候,我们一般采用序列标注算法,这就对标注的文本格式有一定的要求,因此,一个好的序列标注的平台 ...
本文只介绍如何快速的使用CRF++做序列标注,对其中的原理和训练测试参数不做介绍。 官网地址:CRF++: Yet Another CRF toolkit 主要完成如下功能: 以下所有内容均为原创,如果觉得本教程不错的话,点个赞再走呗~ 一、资源准备 下载链接中的内容 ...