前面已经介绍过朴素贝叶斯的原理,今天来介绍一下朴素贝叶斯的三个常用模型:多项式模型、伯努利模型和高斯模型。 多项式模型 该模型常用于文本分类,特征是单词,值是单词的出现次数。 在多项式模型中,设某文档d={t1,t2,...,tk},ti(i=1,2,...,k)为在该文档d中出现的单词 ...
朴素贝叶斯中的基本假设 训练数据是由 P left X,Y right 独立同分布产生的 条件独立假设 当类别确定时特征之间是相互独立的 : P left X x Y c k right P left X left right x left right , X left right x left right , ldots , X left n right x left n right Y c k ...
2019-06-17 21:48 0 499 推荐指数:
前面已经介绍过朴素贝叶斯的原理,今天来介绍一下朴素贝叶斯的三个常用模型:多项式模型、伯努利模型和高斯模型。 多项式模型 该模型常用于文本分类,特征是单词,值是单词的出现次数。 在多项式模型中,设某文档d={t1,t2,...,tk},ti(i=1,2,...,k)为在该文档d中出现的单词 ...
我理解的朴素贝叶斯模型 我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。 条件概率是朴素贝叶斯模型的基础。 假设,你的xx公司正在面临着用户流失的压力 ...
条件概率 •设A,B为任意两个事件,若P(A)>0,我们称在已知事件A发生的条件下,事件B发生的概率为条件概率,记为P(B|A),并定义 乘法公式 •如果P(A)>0 ...
朴素贝叶斯模型 朴素贝叶斯的应用 朴素贝叶斯模型是文本领域永恒的经典,广泛应用在各类文本分析的任务上。只要遇到了文本分类问题,第一个需要想到的方法就是朴素贝叶斯,它在文本分类任务上是一个非常靠谱的基准(baseline)。 比如对于垃圾邮件的分类,朴素贝叶斯 ...
目录 一、贝叶斯 什么是先验概率、似然概率、后验概率 公式推导 二、为什么需要朴素贝叶斯 三、朴素贝叶斯是什么 条件独立 举例:长肌肉 拉普拉斯平滑 半朴素贝叶斯 一、贝叶斯 ...
先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,c ...
朴素贝叶斯中的朴素是指特征条件独立假设, 贝叶斯是指贝叶斯定理, 我们从贝叶斯定理开始说起吧. 1. 贝叶斯定理 贝叶斯定理是用来描述两个条件概率之间的关系 1). 什么是条件概率? 如果有两个事件A和B, 条件概率就是指在事件B发生的条件下, 事件A发生的概率, 记作P(A|B ...
模型 生成模型介绍 我们定义样本空间为\(\mathcal{X} \subseteq \mathbb{R}^n\),输出空间为\(\mathcal{Y} = \{c_1, c_2, ..., c_K\}\)。\(\textbf{X}\)为输入空间上的随机向量,其取值为\(\textbf{x ...