机器学习定义 1959年Arthur Samuel曾经这样定义机器学习:Field of study that gives computers the ability to learn without being explicitly programmed.Samuel 本人也写了一个西洋棋 ...
一 基本操作 本课程有编程作业,编程作业需要使用Matlab或Octave,本文章使用Octave。下载地址:http: www.gnu.org software octave install。安装完成后,打开GNU Octave GUI 开始写代码。 基本运算 值得注意的是Octave使用 符号表示次幂,而不是向其他语言一样表示异或,而异或运算使用xor 函数。并且不等于使用 而不是 。 基本运 ...
2019-06-17 16:20 0 458 推荐指数:
机器学习定义 1959年Arthur Samuel曾经这样定义机器学习:Field of study that gives computers the ability to learn without being explicitly programmed.Samuel 本人也写了一个西洋棋 ...
定义一些名词 欠拟合(underfitting):数据中的某些成分未被捕获到,比如拟合结果是二次函数,结果才只拟合出了一次函数。 过拟合(overfitting):使用过量的特征集合,使模型过于复杂。 参数学习算法(parametric learning algorithms):用固定的参数 ...
朴素贝叶斯算法(Naive Bayes)(续学习笔记四) 两个朴素贝叶斯的变化版本 x_i可以取多个值,即p(x_i|y)是符合多项式分布的,不是符合伯努利分布的。其他的与符合伯努利的情况一样。(同时也提供一种思路将连续型变量变成离散型的,比如说房间的面积可以进行离散分类,然后运用这个朴素贝叶 ...
网易云课堂吴恩达机器学习:https://study.163.com/course/introduction/1004570029.htm 斯坦福大学2014(吴恩达)机器学习教程中文笔记:https://github.com/fengdu78 ...
17年开始,网上的机器学习教程逐渐增多,国内我所了解的就有网易云课堂、七月、小象学院和北风。他们的课程侧重点各有不同,有些侧重理论,有些侧重实践,结合起来学习事半功倍。但是论经典,还是首推吴恩达的机器学习课程。 吴大大14年在coursera的课程通俗易懂、短小精悍,在讲解知识点的同时,还会穿插 ...
四、多变量线性回归(Linear Regression with Multiple Variables) 4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践1-特征缩放 4.4 梯度下降法实践2-学习率 4.5 特征和多项式回归 4.6 正规方程 ...
一、引言(Introduction) 1.1 欢迎 1.2 机器学习是什么? 1.3 监督学习 1.4 无监督学习 二、单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 ...
本章主要讲解了逻辑回归相关的问题,比如什么是分类?逻辑回归如何定义损失函数?逻辑回归如何求最优解?如何理解决策边界?如何解决多分类的问题? 更多内容参考 机器学习&深度学习 有的时候我们遇到的问题并不是线性的问题,而是分类的问题。比如判断邮件是否是垃圾邮件,信用卡交易是否正常 ...