计算F1Score ...
F score,micro F score,macro F score 的定义 年 月 日 : : wanglei 阅读数 本篇博客可能会继续更新 最近在文献中经常看到precesion,recall,常常忘记了他们的定义,在加上今天又看到评价多标签分类任务性能的度量方法micro F score和macro F score。决定再把F score一并加进来把定义写清楚,忘记了再来看看。 F s ...
2019-06-16 19:32 0 561 推荐指数:
计算F1Score ...
F1 score 关于精准率和召回率 精准率和召回率可以很好的评价对于数据极度偏斜的二分类问题的算法,有个问题,毕竟是两个指标,有的时候这两个指标也会产生差异,对于不同的算法,精准率可能高一些,召回率可能低一些,反之一样,真正使用的时候应该根据具体的使用场景来去解读这两个指标 想要得到这两个 ...
一、四种平均算法 平方平均数:Qn=√ [(a12+a22+...+an2)/n] ——>应用:标准差 算术平均数:An=(a1+a2+...+an)/n ——>1阶平均 ...
轉自 https://blog.csdn.net/sinat_28576553/article/details/80258619 四个基本概念TP、True Positive 真阳性:预测 ...
1、fit(X,y),在(X,y)上运行记分函数并得到适当的特征。2、fit_transform(X[, y]),拟合数据,然后转换数据。3、get_params([deep]),获得此估计器的参数。 ...
F1-Score相关概念 F1分数(F1 Score),是统计学中用来衡量二分类(或多任务二分类)模型精确度的一种指标。它同时兼顾了分类模型的准确率和召回率。 F1分数可以看作是模型准确率和召回率的一种加权平均,它的最大值是1,最小值是0,值越大意味着模型越好。 假如有100个样本 ...
当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解 ...
一、基础 疑问1:具体使用算法时,怎么通过精准率和召回率判断算法优劣? 根据具体使用场景而定: 例1:股票预测,未来该股票是升还是降?业务要求更精准的找到能够上升的股票 ...