参考博客:https://blog.csdn.net/qq_31342997/article/details/88078213 https://blog.csdn.net/u0129694 ...
机器学习 模型融合方法概述 我理解的Kaggle比赛中提高成绩主要有 个地方 特征工程 调参 模型融合 之前每次打比赛都只做了前两部分,最后的模型融合就是简单的加权平均,对于进阶的Stacking方法一直没尝试,这几天摸索了一下还是把Stacking方法给弄懂了。 本文重点讲解Stacking,Bagging和Boosting有很多权威的好教程,所以不详细介绍 最早的Stacking思想早些年就 ...
2019-06-14 16:46 0 4367 推荐指数:
参考博客:https://blog.csdn.net/qq_31342997/article/details/88078213 https://blog.csdn.net/u0129694 ...
1. 机器学习来龙去脉 1.1 人类智能与人工智能 人类具备智能,可以学习、思考以及创新,能够做到很多机器做不到的事情。 在计算机(Computer)被研发出来不久后,为降低人类工作负担,一些专家早在1950年提出了人工智能(Artificial Intelligent,AI ...
评估指标的局限性 准确率(Accuracy) \(\text{Accuracy} = \dfrac{n_{correct}}{n_{total}}\) 样本不均衡时, ...
目录 1、简介 1.1 训练误差和测试误差 1.2、过拟合与欠拟合 2、模型选择 2.1、正则化 2.2、简单交叉验证 2.3、S折交叉验证 2.4、自助方法 3、模型评估 ...
对于在受监管行业中工作的分析师和数据科学家来说,尽管机器学习可能会带来『能极大提高预测精度』这一好处,然而它可能不足以弥补内部文档需求以及外部监管责任所带来的成本。对于实践者而言,传统线性模型技术可能是预测模型中的唯一选择。然而,创新和竞争的驱动力并不因为你在一个受监管的模式下工作就会止息 ...
机器学习的模型泛化 1、机器学习的模型误差主要含有三个方面的误差:模型偏差、模型方差以及不可避免的误差。 2、对于机器学习训练模型的偏差主要因为对于问题本身的假设不对,比如非线性误差假设为线性误差进行训练和预测,算法层面上欠拟合是产生较大偏差的主要原因。另外主要来自于特征参量与最终结果的相关性 ...
今天给大家带来一篇如何评价模型的好坏以及模型的得分 最下面的代码最有用 一、错误率与精度(accuracy 准确) 错误率和精度是分类任务中最常用的两种性能度量,既适用于二分类任务,也适用于多分类任务。错误率是分类错误的样本数占样本总数的比例,精度则是分类正确的样本数占 ...