这篇文章讲得比较清晰,特地备份一下: pytorch中backward函数的gradient参数作用 问题引入 在深度学习中,经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。 PyTorch中 ...
导数偏导数的数学定义 参考资料 和 中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源库都涉及到标量对向量求导.比如下面这个pytorch的例子. 简单解释下,设 x x ,x ,x ,则 begin equation z x x x end equation 则 begin equa ...
2019-06-14 14:38 1 1397 推荐指数:
这篇文章讲得比较清晰,特地备份一下: pytorch中backward函数的gradient参数作用 问题引入 在深度学习中,经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。 PyTorch中 ...
padding是输入数据最边缘补0的个数,默认是0,即不补0. stride是进行一次卷积后,特征图滑动几格,默认是1,即滑动一格. ...
retain_graph参数的作用 官方定义: retain_graph (bool, optional) – If False, the graph used to compute the grad will be freed. Note that in nearly all cases ...
摘要:一个神经网络有N个样本,经过这个网络把N个样本分为M类,那么此时backward参数的维度应该是【N X M】 正常来说backward()函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿 ...
如果我们设置的dilation=0的话,效果如图: 蓝色为输入,绿色为输出,可见卷积核为3*3的卷积核 如果我们设置的是dilation=1,那么效果如图: 蓝色为输入,绿色为输出,卷 ...
转自:https://sherlockliao.github.io/2017/07/10/backward/ backward只能被应用在一个标量上,也就是一个一维tensor,或者传入跟变量相关的梯度。 特别注意Variable里面默认的参数requires_grad=False ...
这个函数的作用是反向传播计算梯度的。 这个只有标量才能直接使用 backward(),如果使用自定义的函数,得到的不是标量,则backward()时需要传入 grad_variable 参数。 torch.tensor是autograd包的基础类,如果你设置tensor ...
1.当设置group=1时: 返回: 另一个例子: 返回: 可见第一个值为out_channels的大小,第二个值为in_channel ...