本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5。模型评估指标位于包org.apache.spark.ml.evaluation下。 模型评估指标是指测试集的评估指标,而不是训练集的评估指标 1、回归 ...
MLlib 是 Spark 的机器学习库,旨在简化机器学习的工程实践工作,并方便扩展到更大规模。MLlib 由一些通用的学习算法和工具组成,包括分类 回归 聚类 协同过滤 降维等,同时还包括底层的优化原语和高层的管道 API。具体来说,主要包括以下几方面的内容: 机器学习算法:常用的学习算法,如分类 回归 聚类和协同过滤 特征化工具:特征提取 转化 降维和特征选择等工具 管道:由于构建 评估和调整 ...
2019-06-14 10:45 0 2321 推荐指数:
本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5。模型评估指标位于包org.apache.spark.ml.evaluation下。 模型评估指标是指测试集的评估指标,而不是训练集的评估指标 1、回归 ...
https://spark.rstudio.com/guides/mlib.html Spark机器学习库 sparklyr提供了Spark分布式机器学习库的绑定。特别是,允许你访问 spark.ml 包提供的机器学习例程。结合 sparklyr的 dplyr 接口,您可以轻松地在 Spark ...
第一章 mesos spark shell SPARK-shell (1)修改spark/conf/spark-env.sh ,增加以下内容 (2)运行命令: shell ./bin/spark-shell --master mesos://host:5050 (3)代码 ...
将Mahout on Spark 中的机器学习算法和MLlib中支持的算法统计如下: 主要针对MLlib进行总结 分类与回归 分类和回归是监督式学习; 监督式学习是指使用有标签的数据(LabeledPoint)进行训练,得到模型后,使用测试数据预测结果。其中标签数据是指已知 ...
本文机器学习库使用的部分代码来源于spark1.0.0官方文档。 mllib是spark对机器学习算法和应用的实现库,包括分类、回归、聚类、协同过滤、降维等,本文的主要内容为如何使用scala语言创建sbt工程实现机器学习算法,并进行本地和集群的运行。(初学者建议先在RDD交互式模式下按行输入 ...
spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库。旨在简化机器学习的工程实践工作,并方便扩展到更大规模。MLlib由一些通用的学习算法和工具组成,包括分类、回归、聚类、协同过滤、降维等,同时还包括底层的优化原语和高层的管道API ...
Spark 版本:2.1.0 数据集:下载 Adult 数据集(http://archiv ...
本章导读 机器学习(machine learning, ML)是一门涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多领域的交叉学科。ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识、新技能,并重组已学习的知识结构使之不断改善自身。 MLlib是Spark提供的可扩展的机器学习库 ...