前言 1. 删除重复 2. 异常值监测 3. 替换 4. 数据映射 5. 数值变量类型化 6. 创建哑变量 统计师的Python日记【第7天:数据清洗(1)】 前言 根据我的Python学习计划: Numpy → Pandas ...
前言 1. 删除重复 2. 异常值监测 3. 替换 4. 数据映射 5. 数值变量类型化 6. 创建哑变量 统计师的Python日记【第7天:数据清洗(1)】 前言 根据我的Python学习计划: Numpy → Pandas ...
接触Python两年多了,还从来没有独立用Python完成一个项目,说来惭愧。最近因为工作需要,用Excel和oracle整理数据貌似不可行了,于是转向Python,理所当然的踩了很多坑,一一记录下来,避免以后再次入坑,毕竟不常用,好了伤疤就会忘了疼··· 业务场景: 领导拿来几个 ...
一、英文数据清洗 英文数据清洗是去除缩写、非字母符号、专有名词的缩写、提取词干、提取词根。 1.常规的清洗方式 去除非字母符号和常用缩写 2.详细的处理方式 去除普通的缩写,还引入了一些专有名词的处理、标点符号的处理 3.包括有处理词根词缀的处理方式 ...
# -*- coding: utf-8 -*-"""Created on Wed Jul 4 18:40:55 2018 @author: zhen""" import pandas as pdimport numpy as np# 创建空的df,保存测试数据test_df ...
1.数据错误: 错误类型– 脏数据或错误数据• 比如, Age = -2003– 数据不正确• ‘0’ 代表真实的0,还是代表缺失– 数据不一致• 比如收入单位是万元,利润单位是元,或者一个单位是美元,一个是人民币– 数据重复 2.缺失值处理: 处理原则–缺失值少于20%•连续变量 ...
参考:http://blog.sina.com.cn/s/blog_13050351e0102xfis.html https://www.sogou.com/link?url=DOb0bgH2eKh1 ...
对爬虫数据进行自然语言清洗时用到的一些正则表达式 标签中的所有属性匹配(排除src,href等指定参数) 参考链接 # \b(?!src|href)\w+=[\'\"].*?[\'\"](?=[\s\>]) # 匹配特征 id="..." # \b(?!...)排除属性名中 ...