1.简介 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 2. 算法大致流程 ...
K means聚类 将n个观测点,按一定标准 数据点的相似度 ,划归到k个聚类 用户划分 产品类别划分等 中。 重要概念:质心 K means聚类要求的变量是数值变量,方便计算距离。 算法实现 R语言实现 k means算法是将数值转换为距离,然后测量距离远近进行聚类的。不归一化的会使得距离非常远。 补充:scale归一化处理的意义 两个变量之间数值差别太大,比如年龄与收入的数值差别就很大。 步骤 ...
2019-06-08 17:50 0 3220 推荐指数:
1.简介 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 2. 算法大致流程 ...
本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等。最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等。K-means作为其中比较简单的一种肯定是要好好掌握的。今天就讲讲K-means的基本原理和代码实现 ...
初始目的 将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定的好不好呢? 我们使用样本的极大似然估计来度量,这里就是x和y的联合分布P(x,y ...
1. 归类: 聚类(clustering):属于非监督学习(unsupervised learning) 无类别标记(class label) 2. 举例: 3. Kmeans算法 3.1 clustering中的经典算法 ...
.caret, .dropup > .btn > .caret { border-top-color: #000 !important ...
机器学习六--K-means聚类算法 想想常见的分类算法有决策树、Logistic回归、SVM、贝叶斯等。分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足 ...
k-means简介 k-means是无监督学习下的一种聚类算法,简单说就是不需要数据标签,仅靠特征值就可以将数据分为指定的几类。k-means算法的核心就是通过计算每个数据点与k个质心(或重心)之间的距离,找出与各质心距离最近的点,并将这些点分为该质心所在的簇,从而实现聚类的效果 ...
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法。 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型。而在聚类算法中是怎么来度量模型的好坏呢?聚类算法模型的性能度量大致有两类 ...