第12章 统计学习方法总结 1 适用问题 分类问题是从实例的特征向量到类标记的预测问题; 标注问题 是从观测序列到标记序列(或状态序列)的预测问题。可以认为分类问题是标注 问题的特殊情况。 分类问题中可能的预测结果是二类或多类; 而标注问题 ...
种统计学习方法特点的概括总结 本书共介绍了 种主要的统计学习方法:感知机,KNN,朴素贝叶斯,决策树,逻辑斯谛回归与最大熵模型,SVM,提升方法,EM算法,隐马尔可夫模型,条件随机场 CRF 。 适用问题 感知机,KNN,朴素贝叶斯,决策树,逻辑斯谛回归与最大熵模型,SVM,提升方法是分类方法。 原始的感知机,SVM以及提升方法是针对二分类的,可以将它们扩展到多类。 感知机,KNN,朴素贝叶斯, ...
2019-06-05 15:58 0 669 推荐指数:
第12章 统计学习方法总结 1 适用问题 分类问题是从实例的特征向量到类标记的预测问题; 标注问题 是从观测序列到标记序列(或状态序列)的预测问题。可以认为分类问题是标注 问题的特殊情况。 分类问题中可能的预测结果是二类或多类; 而标注问题 ...
提升方法 简述:提升方法(boosting)是一种常用的统计学习方法,应用广泛且有效。在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能。 本章 (1)介绍boosting方法的思路和代表性的boosting算法AdaBoost (2)通过训练 ...
KNN算法 基本模型:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例。这k个实例的多数属于某个类,就把输入实例分为这个类。 KNN没有显式的学习过程。 KNN使用的模型实际上对应于特征空间的划分。特征空间中,对每个训练实例点\(x_i\),距离该点比其它点更近 ...
写在前面 本系列笔记主要记录《统计学习方法》中7种常用的机器学习分类算法,包括感知机,KNN,朴素贝叶斯,决策树,逻辑斯谛回归与最大熵模型,SVM,boosting。 课本还涉及到3种算法是关于概率模型估计和标注问题的,暂未列入学习计划,所以笔记中没有涉及,包括EM算法,隐马尔可夫模型,条件 ...
转自:https://github.com/SmirkCao/Lihang 最近又捡起了李航老师的《统计学习方法》开始啃,之前因为干货太多一看就困索性放弃(捂脸~),突然在知乎上看到有大神的总结,希望大神能带我飞哈哈。 [TOC] GitHub的markdown公式支持一般, 推荐使用 ...
第一章 统计学习方法概论 统计学习的主要特点是: (1)统计学习以计算机及网络为平台,是建立在计 算机及网络之上的; (2)统计学习以数据为研究对象,是数据驱动的学科; (3)统 ...
感知机 基本模型:感知机1957年由Rosenblatt提出,是神经网络与SVM的基础。它是一个二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。 \[f(x ...
简述 支持向量机 :是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机。 核技巧:SVM还包括核技巧,这使它成为实质上的非线性分类器。 间隔最大化:SVM的学习策略是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数 ...