【机器学习】算法原理详细推导与实现(一):线性回归 今天我们这里要讲第一个有监督学习算法,他可以用于一个回归任务,这个算法叫做 线性回归 房价预测 假设存在如下 m 组房价数据: 面积(m^2) 价格(万元) 82.35 ...
机器学习 算法原理详细推导与实现 二 :逻辑回归 在上一篇算法中,线性回归实际上是 连续型 的结果,即 y in R ,而逻辑回归的 y 是离散型,只能取两个值 y in , ,这可以用来处理一些分类的问题。 logistic函数 我们可能会遇到一些分类问题,例如想要划分 鸢尾花 的种类,尝试基于一些特征来判断鸢尾花的品种,或者判断上一篇文章中的房子,在 个月之后能否被卖掉,答案是 是 或者 否 ...
2019-06-25 10:19 4 988 推荐指数:
【机器学习】算法原理详细推导与实现(一):线性回归 今天我们这里要讲第一个有监督学习算法,他可以用于一个回归任务,这个算法叫做 线性回归 房价预测 假设存在如下 m 组房价数据: 面积(m^2) 价格(万元) 82.35 ...
实验环境:Python 3.6 编辑器:Jupyter Notebook 6.0.1 实验要求:可以调用numpy、pandas基础拓展程序包,不可以调用sklearn机器学 ——————————————————我是分割线喵 ...
本文始发于个人公众号:TechFlow,原创不易,求个关注 在之前的文章当中,我们推导了线性回归的公式,线性回归本质是线性函数,模型的原理不难,核心是求解模型参数的过程。通过对线性回归的推导和学习,我们基本上了解了机器学习模型学习的过程,这是机器学习的精髓,要比单个模型的原理重要得多。 新 ...
【机器学习】算法原理详细推导与实现(七):决策树算法 在之前的文章中,对于介绍的分类算法有逻辑回归算法和朴素贝叶斯算法,这类算法都是二分类的分类器,但是往往只实际问题中\(y\)不仅仅只有\(\{0,1\}\),当出现一个新的类别\(y=2\)时,之前的分类器就不太适用,这里就要介绍一个叫做 ...
【机器学习】算法原理详细推导与实现(六):k-means算法 之前几个章节都是介绍有监督学习,这个章节介绍无监督学习,这是一个被称为k-means的聚类算法,也叫做k均值聚类算法。 聚类算法 在讲监督学习的时候,通常会画这样一张图: 这时候需要用logistic回归或者SVM将这些数据 ...
一、逻辑回归基本概念 1. 什么是逻辑回归 逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。 Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题 ...
【机器学习】算法原理详细推导与实现(三):朴素贝叶斯 在上一篇算法中,逻辑回归作为一种二分类的分类器,一般的回归模型也是是判别模型,也就根据特征值来求结果概率。形式化表示为 \(p(y|x;\theta)\),在参数 \(\theta\) 确定的情况下,求解条件概率 \(p(y|x)\) 。通俗 ...
【机器学习】算法原理详细推导与实现(四):支持向量机(上) 在之前的文章中,包括线性回归和逻辑回归,都是以线性分界线进行分割划分种类的。而本次介绍一种很强的分类器【支持向量机】,它适用于线性和非线性分界线的分类方法。 函数间隔概念 为了更好的理解非线性分界线,区别两种分界线对于分类的直观理解 ...