python数据预处理之缺失值简单处理:https://blog.csdn.net/Amy_mm/article/details/79799629 该博客总结比较详细,感谢博主。 我们在进行模型训练时,不可避免的会遇到某些特征出现空值的情况,下面整理了几种填充空值的方法 1. 用固定值 ...
. 两个常用的函数 . np.nonzero np.nonzero 函数返回数组中不为False 的元素对应的索引 . np.isnan np.isnan 函数判断一个数组各个元素是否为nan,并返回相同维度对应的bool数组 类似的还有np. isnan 函数,顾名思义就是实值检测,对于非nan元素返回true,nan元素返回false,与isnan 函数刚好相反 . 实现一个缺失值填充函数 ...
2019-06-04 16:09 0 4227 推荐指数:
python数据预处理之缺失值简单处理:https://blog.csdn.net/Amy_mm/article/details/79799629 该博客总结比较详细,感谢博主。 我们在进行模型训练时,不可避免的会遇到某些特征出现空值的情况,下面整理了几种填充空值的方法 1. 用固定值 ...
7. 处理缺失值 7.1 数据准备 7.2 查看缺失值 ...
主要是方法: ...
原文链接:http://tecdat.cn/?p=8287 介绍 缺失值被认为是预测建模的首要障碍。因此,掌握克服这些问题的方法很重要。 估算缺失值的方法的选择在很大程度上影响了模型的预测能力。在大多数统计分析方法中,按列表删除是用于估算缺失值的默认方法。但是,它不那么好,因为它会导致 ...
在数据建模过程中,针对入模的数据需做数据清洗,特别针对缺失数据。 缺失数据比较多的情况下,可以考虑直接删除;缺失数据较少的情况下,可对数据进行填充。 此时,fillna() 则派上用场。语法为: 创建测试数据框: 用0填充 用每列特征的均值填充 ...
1、数值型取列平均值,非数值型取众数(频数最大)。 2、加权平均 2.1 计算变量之间相关系数R,取1/R,再归一化 2.2 归一化方法:除总和,即为权重 其他多重插补、模型预测等方法,我不建 ...
(1)如果缺值的样本占总数比例极高,我们可能就直接舍弃了,作为特征加入的话,可能反倒带入noise,影响最后的结果了; (2)如果缺值的样本适中,而该属性非连续值特征属性(比如说类目属性),那就把NaN作为一个新类别,加到类别特征中; 【注:NaN ...
缺失值填充是数据预处理最基本的步骤,一般能想到的是固定值填充(均值等统计学方法)、根据与本列有相关关系的列函数表示来填充。这次我用的是em算法进行填充,具体原理后续补充。 主要记录一下步骤: 工具栏:分析 菜单 ----> 缺失值分析------>弹出来的对话框:左边是表格中 ...