卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 了解 ...
在TensorFlow中,使用tr.nn.conv d来实现卷积操作,使用tf.nn.max pool进行最大池化操作。通过闯传入不同的参数,来实现各种不同类型的卷积与池化操作。 卷积函数tf.nn.conv d TensorFlow里使用tf.nn.conv d函数来实现卷积,其格式如下: tf.nn.conv d input, filter, strides, padding, use cud ...
2019-06-03 21:57 0 556 推荐指数:
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 了解 ...
tf.Graph 操作 描述 class tf.Graph tensorflow中的计算以图数据流的方式表示一个图包含一系列表示计算单元的操作对象以及在图中流动的数据单元以tensor对象表现 ...
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败。如下图: 同样是在一个图片中找圆形,如果左边为训练样本,右边为测试样本,如果只训练了左边的情况,右边的一定会预测错误,然而在我们人眼看 ...
很玄学,没有修改参数,在test上的准确率从98%多变为99.1%了 参考链接:《简单粗暴Tensorflow》,狂吹 ...
1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连接神经网络结构和卷积神经网络的结构直观上差异比较大,但实际上它们的整体架构 ...
基础概念: 卷积神经网络(CNN):属于人工神经网络的一种,它的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量。卷积神经网络不像传统的识别算法一样,需要对数据进行特征提取和数据重建,可以直接将图片作为网络的输入,自动提取特征,并且对图形的变形等具有高度不变形。在语音分析和图像识别 ...
1.标准卷积神经网络 标准的卷积神经网络由输入层、卷积层(convolutional layer)、下采样层(downsampling layer)、全连接层(fully—connected layer)和输出层构成。 卷积层也称为检测层 下采样层也称为池化层(pooling ...
先简单理解一下卷积这个东西。 (以下转自https://blog.csdn.net/bitcarmanlee/article/details/54729807 知乎是个好东西) 1.知乎上排名最高的解释 首先选取知乎上对卷积物理意义解答排名最靠前的回答。 不推荐用“反转/翻转/反褶/对称 ...