● BatchNormalization的作用 参考回答: 神经网络在训练的时候随着网络层数的加深,激活函数的输入值的整体分布逐渐往激活函数的取值区间上下限靠近,从而导致在反向传播时低层的神经 ...
Word Vec中skip gram是什么,NegativeSampling怎么做 参考回答: Word Vec通过学习文本然后用词向量的方式表征词的语义信息,然后使得语义相似的单词在嵌入式空间中的距离很近。而在Word Vec模型中有Skip Gram和CBOW两种模式,Skip Gram是给定输入单词来预测上下文,而CBOW与之相反,是给定上下文来预测输入单词。Negative Sampli ...
2019-06-03 20:52 0 1810 推荐指数:
● BatchNormalization的作用 参考回答: 神经网络在训练的时候随着网络层数的加深,激活函数的输入值的整体分布逐渐往激活函数的取值区间上下限靠近,从而导致在反向传播时低层的神经 ...
● 深度学习了解多少,有看过底层代码吗?caffe,tf? ● 除了GMM-HMM,你了解深度学习在语音识别中的应用吗? 参考回答: 讲了我用的过DNN-HMM,以及与GMM-HMM的 ...
1: LSTM结构推导,为什么比RNN好?答案:推导forget gate,input gate,cell state, hidden information等的变化;因为LSTM有进有出且当前的ce ...
● 神经网络为啥用交叉熵。 参考回答: 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输 ...
● 什么是DBSCAN 参考回答: DBSCAN是一种基于密度的空间聚类算法,它不需要定义簇的个数,而是将具有足够高密度的区域划分为簇,并在有噪声的数据中发现任意形状的簇,在此算法中将簇定义为密度相连的点的最大集合。 ● k-means算法流程 参考回答: 从数据集中随机选择k ...
● 分层抽样的适用范围 参考回答: 分层抽样利用事先掌握的信息,充分考虑了保持样本结构和总体结构的一致性,当总体由差异明显的几部分组成的时候,适合用分层抽样。 ● LR的损失函数 参考回 ...
● 请你说一说推荐算法,fm,lr,embedding 参考回答: 推荐算法: 基于人口学的推荐、基于内容的推荐、基于用户的协同过滤推荐、基于项目的协同过滤推荐、基于模型的协同过滤推荐、基于关联规则的推荐 FM: LR: 逻辑回归本质上是线性回归,只是在特征 ...
交叉熵公式 参考回答: 交叉熵:设p(x)、q(x)是X中取值的两个概率分布,则p对q的相对熵是: 在一定程度上,相对熵可以度量两个随机变量的“距离”,且有D(p||q) ≠D(q| ...