的问题(即任取一个word embedding向量不一定能找到其所对应的文字),GAN对于NLP的处理不如 ...
为什么GAN不能直接用于NLP中 生成图像是用随机的向量做实值的映射变换,是连续的过程。因此可以将判别器的误差反向传播到生成器。 在自然语言处理中,encoder解码生成文本的过程中,模型生成词的过程其实是在词表中选词的过程,它是根据当前网络输出的词语的整个概率分布,选取概率最大的词。这个选词的过程argmax是一个离散的过程,是不可导的。因此,无法通过D的梯度反向传播到G,故无法更新G的参数。 ...
2019-06-01 20:07 0 741 推荐指数:
的问题(即任取一个word embedding向量不一定能找到其所对应的文字),GAN对于NLP的处理不如 ...
最近真的被mask搞得晕晕的,还是需要好好的看下哦 1、padding mask:处理非定长序列,区分padding和非padding部分,如在RNN等模型和Attention机制中的应用等 2、sequence mask:防止标签泄露,如:Transformer decoder中的mask矩阵 ...
相关方法合集见:https://github.com/quincyliang/nlp-data-augmentation 较为简单的数据增强的方法见论文:https://arxiv.org/pdf/1901.11196.pdf 论文中所使用的方法如下: 1. 同义词替换(SR ...
概述GAN(Generative Adversarial Network,生成对抗网络)是一个网络框架,它通常包括两部分,生成器(generator)和判别器(discriminator)。生成器的作用是学习真实数据的分布(或者通俗地说就是学习真实数据的特征),然后自动地生成新的数据 ...
自然语言处理方面的研究在近几年取得了惊人的进步,深度神经网络模型已经取代了许多传统的方法。但是,当前提出的许多自然语言处理模型并不能够反映文本的多样特征。因此,许多研究者认为应该开辟新的研究方法,特别 ...
https://blog.csdn.net/chuchus/article/details/78386059 词汇是语料库的基本元素, 所以, 使用embedding layer来学习词嵌入, 将一 ...
作者|Renu Khandelwal 编译|VK 来源|Towards Data Science 在这篇文章中,我们将讨论以下有关Transformer的问题 为什么我们需要Transformer,Sequence2Sequence模型的挑战是什么? 详细介绍 ...
序列标注 序列标注是指对一段元素序列中的每一元素或部分元素进行标签标注的任务,对部分元素进行标签标注的任务又称作联合标注,而对每一元素都进行标签标注的任务称为原始标注。 BIO标注 BIO标注就是联合标注的一种,具体地B、I、O 分别表示Begin Inner Other 进一步地来说 ...