神经网络模型量化方法简介 https://chenrudan.github.io/blog/2018/10/02/networkquantization.html 2018-10-02 本文主要梳理了模型量化算法的一些文章,阐述了每篇文章主要的内核思想和量化过程,整理了一些 ...
一 简介 主要参考博客:纵览轻量化卷积神经网络 https: zhuanlan.zhihu.com p , SqueezeNet: SqueezeNet对比AlexNet能够减少 倍的网络参数,但是却拥有相近的性能。SqueezeNet主要强调用 x 的卷积核进行feature map个数的压缩,从而达到大量减少网络参数的目的。在构造网络的时候,采用VGG的堆叠思想。 , moblieNet: ...
2019-05-25 22:30 1 1539 推荐指数:
神经网络模型量化方法简介 https://chenrudan.github.io/blog/2018/10/02/networkquantization.html 2018-10-02 本文主要梳理了模型量化算法的一些文章,阐述了每篇文章主要的内核思想和量化过程,整理了一些 ...
深度学习神经网络模型中的量化是指浮点数用定点数来表示,也就是在DSP技术中常说的Q格式。我在以前的文章(Android手机上Audio DSP频率低 memory小的应对措施 )中简单讲过Q格式,网上也有很多讲Q格式的,这里就不细讲了。神经网络模型在训练时都是浮点运算的,得到的模型参数也是浮点 ...
VGG卷积神经网络模型解析 一:VGG介绍与模型结构 VGG全称是Visual Geometry Group属于牛津大学科学工程系,其发布了一些列以VGG开头的卷积网络模型,可以应用在人脸识别、图像分类等方面,分别从VGG16~VGG19。VGG研究卷积网络深度的初衷是想搞清楚卷积 ...
卷积神经网络模型可解释性 缺乏可解释性仍然是在许多应用中采用深层模型的一个关键障碍。在这项工作中,明确地调整了深层模型,这样人类用户可以在很短的时间内完成他们预测背后的过程。具体地说,训练了深度时间序列模型,使得类概率预测具有较高的精度,同时被节点较少的决策树紧密地建模。使用直观的玩具例子 ...
1、LeNet-5模型简介 LeNet-5 模型是 Yann LeCun 教授于 1998 年在论文 Gradient-based learning applied to document recognitionr [1] 中提出的,它是第一个成功应用于数字识别问题的卷积神经网络 ...
1、GoogLeNet 模型简介 GoogLeNet 是2014年Christian Szegedy提出的一种全新的深度学习结构,该模型获得了ImageNet挑战赛的冠军。 2、GoogLeNet 模型的提出 1)在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好 ...
这里我们会用 Python 实现三个简单的卷积神经网络模型:LeNet 、AlexNet 、VGGNet,首先我们需要了解三大基础数据集:MNIST 数据集、Cifar 数据集和 ImageNet 数据集 三大基础数据集 MNIST 数据集 MNIST数据集是用作手写体识别的数据集 ...
卷积神经网络(Convolutional Neural Network,CNN)最初是为解决图像识别等问题设计的,在早期的图像识别研究中,最大的挑战是如何组织特征,因为图像数据不像其他类型的数据那样可以通过人工理解来提取特征。卷积神经网络相比传统的机器学习算法,无须手工提取特征,也不需要使用诸如 ...