训练的时候很”脆弱”,很容易就”die”了,训练过程该函数不适应较大梯度输入,因为在参数更新以后,ReLU的神经元不会再有激活的功能,导致梯度永远都是零。 例如,一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了,那么这个神经元的梯度就永远 ...
Relu不适合梯度过大的的输入 Relu是我们在训练网络时常用的激活函数之一 对我而言没有之一 。然而最近发现Relu太脆弱了,经常由于输入的函数梯度过大导致网络参数更新后,神经元不再有激活功能。特别是网络在训练刚开始的时候 如果在使用Focal loss,这种现象更容易发生 。 在这种情况下,或许softplus可以尝试一下。相关资料请移步softplus softplus ...
2019-05-25 21:00 0 853 推荐指数:
训练的时候很”脆弱”,很容易就”die”了,训练过程该函数不适应较大梯度输入,因为在参数更新以后,ReLU的神经元不会再有激活的功能,导致梯度永远都是零。 例如,一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了,那么这个神经元的梯度就永远 ...
预训练的用处:规则化,防止过拟合;压缩数据,去除冗余;强化特征,减小误差;加快收敛速度。标准的sigmoid输出不具备稀疏性,需要用一些惩罚因子来训练出一大堆接近0的冗余数据来,从而产生稀疏数据,例如L1、L1/L2或Student-t作惩罚因子。因此需要进行无监督的预训练。而ReLU是线性修正 ...
1、激活函数的作用 什么是激活函数? 在神经网络中,输入经过权值加权计算并求和之后,需要经过一个函数的作用,这个函数就是激活函数(Activation Function)。 ...
Batch normalization + ReLU 批归一化(BN)可以抑制梯度爆炸/消失并加快训练速度 原论文认为批归一化的原理是:通过归一化操作使网络的每层特征的分布尽可能的稳定,从而减少Internal Covariate Shift relu是目前应用最为广泛的激活函数 ...
Rectified Linear Unit), 顾名思义:带参数的ReLU。二者的定义和区别如下图: 如果a ...
ReLU上的花样 CNN出现以来,感觉在各个地方,即便是非常小的地方都有点可以挖掘。比如ReLU。 ReLU的有效性体现在两个方面: 克服梯度消失的问题 加快训练速度 而这两个方面是相辅相成的,因为克服了梯度消失问题,所以训练才会快。 ReLU的起源,在这片博文里 ...
Rectifier(neural networks) 在人工神经网络中,rectfier(整流器,校正器)是一个激活函数,它的定义是:参数中为正的部分。 , 其中,x是神经元的输入。这也被称为r ...
0 - inplace 在pytorch中,nn.ReLU(inplace=True)和nn.LeakyReLU(inplace=True)中存在inplace字段。该参数的inplace=True的意思是进行原地操作,例如: x=x+5是对x的原地操作 y=x+5,x=y ...