原文链接:http://tecdat.cn/?p=23934 原文出处:拓端数据部落公众号 引言 在本文中,我们将尝试为苹果公司的日收益率寻找一个合适的 GARCH 模型。波动率建模需要两个主要步骤。 指定一个均值方程(例如 ARMA,AR,MA,ARIMA 等)。 建立 ...
原文链接:http: tecdat.cn p 我将建立道琼斯工业平均指数 DJIA 日交易量对数比的ARMA GARCH模型。 获取数据 load file DowEnvironment.RData 日交易量 每日交易量内发生的 变化。 plot dj vol 首先,我们验证具有常数均值的线性回归在统计上是显着的。 在休息时间 时达到最小BIC。 以下是道琼斯日均交易量与水平变化 红线 。 sum ...
2019-05-24 17:49 0 442 推荐指数:
原文链接:http://tecdat.cn/?p=23934 原文出处:拓端数据部落公众号 引言 在本文中,我们将尝试为苹果公司的日收益率寻找一个合适的 GARCH 模型。波动率建模需要两个主要步骤。 指定一个均值方程(例如 ARMA,AR,MA,ARIMA 等)。 建立 ...
原文链接:http://tecdat.cn/?p=24407 原文出处:拓端数据部落公众号 这篇文章讨论了自回归综合移动平均模型 (ARIMA) 和自回归条件异方差模型 (GARCH) 及其在股票市场预测中的应用。 介绍 一个 ARMA (AutoRegressive-Moving ...
原文链接: http://tecdat.cn/?p=24092 原文出处:拓端数据部落公众号 前言 在量化金融中,我学习了各种时间序列分析技术以及如何使用它们。 通过发展我们的时间序列分析 ...
原文链接:http://tecdat.cn/?p=24211 原文出处:拓端数据部落公众号 描述 使用 garch 指定一个单变量GARCH(广义自回归条件异方差)模型。 garch 模型的关键参数包括: GARCH 多项式,由滞后条件方差组成。阶数用P表示 ...
原文链接:http://tecdat.cn/?p=16453 金融市场上最重要的任务之一就是分析各种投资的历史收益。要执行此分析,我们需要资产的历史数据。数据提供者很多,有些是免费的,大多数是付费的。在本文中,我们将使用Yahoo金融网站上的数据。 在这篇文章中,我们将: 下载收盘价 ...
quantmod 介绍 quantmod 是一个非常强大的金融分析报, 包含数据抓取,清洗,建模等等功能. 1. 获取数据 getSymbols 默认是数据源是yahoo 获取上交所股票为 getSymbols("600030.ss"), 深交所为 getSymbols ...
“预测非常困难,特别是关于未来”。丹麦物理学家尼尔斯·波尔(Neils Bohr)很多人都会看到这句名言。预测是这篇博文的主题。在这篇文章中,我们将介绍流行的ARIMA预测模型,以预测库存的回报,并演示使用R编程的ARIMA建模的逐步过程。 时间序列中的预测模型是什么? 预测涉及使用其历史数据 ...
原文链接:http://tecdat.cn/?p=18310 为了找出影响价格波动的主要因素,我们使用逐步回归法来剔除一些对于应变量即价格影响很小的自变量剔除出我们的模型,我们分别把WTI Price Field 等自变量的名称改为x1,x2……,最后的突发事件需要用到哑变量,哑变量 ...