1.指定GPU运算 如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测。如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作。 如果机器上有超过一个可用的GPU,除了第一个之外的其他的GPU默认是不参与计算的。为了让TensorFlow使用 ...
TensorFlow指定GPU CPU进行训练和输出devices信息 .在tensorflow代码中指定GPU CPU进行训练 .输出devices的信息 在指定devices的时候往往不知道具体的设备信息,这时可用下面的代码查看对应的信息 进入Python环境 输出以下信息: 找到对应devices的name,复制双引号下的名字,替换第 的代码中的单引号的内容,就可以指定对应的设备进行训练了。 ...
2019-05-23 20:15 0 4496 推荐指数:
1.指定GPU运算 如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测。如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作。 如果机器上有超过一个可用的GPU,除了第一个之外的其他的GPU默认是不参与计算的。为了让TensorFlow使用 ...
tensorflow使用horovod多gpu训练 要使用Horovod,在程序中添加以下内容。此示例使用TensorFlow。 运行hvd.init() 使用固定服务器GPU,以供此过程使用 ...
/darkknightzh/p/6591923.html 场景: 有一台服务器,服务器上有多块儿GPU可以 ...
使用情况没有限制的条件下,既然gpu内存跑满了,代码就崩了怎么样才能随心所欲的指定代码是在cpu还是gpu呢 ...
确认显卡驱动正确安装: CUDA版本和Tensorflow版本有对应关系,TF2.0可以使用CUDA 10.1,安装TF2.0版本,查看conda 源中的TF : 一定要安装 gpu的build,指定build安装方法: 执行命令: 然后来执行python代码测试TF是否 ...
在tensorflow中,我们可以使用 tf.device() 指定模型运行的具体设备,可以指定运行在GPU还是CUP上,以及哪块GPU上。 设置使用GPU 使用 tf.device('/gpu:1') 指定Session在第二块GPU上运行: ConfigProto() 中参数 ...
在训练keras时,发现不使用GPU进行计算,而是采用CPU进行计算,导致计算速度很慢。 用如下代码可检测tensorflow的能使用设备情况: 查看是否只有CPU可用,发现不是,有GPU可用,但是为什么GPU利用率极低并且只有一个GPU在使用,另一个GPU利用率为0, 发现 ...
公司或者实验室当大家都共用一台服务器时,训练模型的时候如果不指定GPU,往往会冲突。 我们可以先用 查看有多少块GPU, 然后分两种方式指定GPU运行。 1、直接在终端运行时加入相关语句实现指定GPU的使用 2、在Python程序中添加 ...