原文:从Encoder-Decoder(Seq2Seq)理解Attention的本质

. 目录 . 前言 . Transformer模型结构 . Transformer的编码器解码器 . 输入层 . 位置向量 . Attention模型 . 总结 . 语言模型 . Attention Is All You Need Transformer 算法原理解析 . ELMo算法原理解析 . OpenAI GPT算法原理解析 . BERT算法原理解析 . 从Encoder Decoder ...

2019-05-23 18:41 0 840 推荐指数:

查看详情

6. 从Encoder-Decoder(Seq2Seq)理解Attention本质

1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention ...

Thu Feb 21 06:16:00 CST 2019 5 6865
Seq2seqAttention模型到Self Attention

Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一。Seq2seq被广泛应用在机器翻译、聊天机器人甚至是图像生成文字等情境。 seq2seq 是一个EncoderDecoder 结构的网络,它的输入是一个序列,输出也是 ...

Thu Jul 04 04:22:00 CST 2019 0 887
Seq2Seq模型 与 Attention 策略

Seq2Seq模型 传统的机器翻译的方法往往是基于单词与短语的统计,以及复杂的语法结构来完成的。基于序列的方式,可以看成两步,分别是 EncoderDecoderEncoder 阶段就是将输入的单词序列(单词向量)变成上下文向量,然后 decoder根据这个向量来预测翻译 ...

Sun May 19 00:43:00 CST 2019 0 1001
seq2seq聊天模型(三)—— attention 模型

注意力seq2seq模型 大部分的seq2seq模型,对所有的输入,一视同仁,同等处理。 但实际上,输出是由输入的各个重点部分产生的。 比如: (举例使用,实际比重不是这样) 对于输出“晚上”, 各个输入所占比重: 今天-50%,晚上-50%,吃-100%,什么-0% 对于输出“吃 ...

Sat Jan 26 20:44:00 CST 2019 0 603
Seq2SeqAttention机制入门介绍

Sequence Generation 引入 在循环神经网络(RNN)入门详细介绍一文中,我们简单介绍了Seq2Seq,我们在这里展开一下 一个句子是由 characters(字) 或 words(词) 组成的,中文的词可能是由数个字构成的。 如果要用训练RNN写句子的话 ...

Sat Sep 28 05:44:00 CST 2019 0 568
Tensorflow Seq2seq attention decode解析

tensorflow基于 Grammar as a Foreign Language实现,这篇论文给出的公式也比较清楚。 这里关注seq2seq.attention_decode函数, 主要输入 decoder_inputs, initial_state ...

Sun Jan 08 18:00:00 CST 2017 1 10526
可视化展示attention(seq2seq with attention in tensorflow)

目前实现了基于tensorflow的支持的带attentionseq2seq。基于tf 1.0官网contrib路径下seq2seq 由于后续版本不再支持attention,迁移到melt并做了进一步开发,支持完全ingraph的beam search(更快速) 以及outgraph ...

Sun Mar 19 04:59:00 CST 2017 1 5140
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM