论文信息:Ravi S, Larochelle H. Optimization as a model for few-shot learning[J]. 2016. 博文作者:Veagau 编辑时间:2020年01月07日 本文是2017年ICLR的会议论文 ...
主要原理: 和Siamese Neural Networks一样,将分类问题转换成两个输入的相似性问题。 和Siamese Neural Networks不同的是: Relation Network中branch的输出和relation classifier的输入是feature map 而Siamese中branch的输出和classifier的输入是feature vector 其中: g ...
2019-05-23 11:52 2 965 推荐指数:
论文信息:Ravi S, Larochelle H. Optimization as a model for few-shot learning[J]. 2016. 博文作者:Veagau 编辑时间:2020年01月07日 本文是2017年ICLR的会议论文 ...
Few-shot Learning ShusenWang的课 问题定义 Few-shot Learning 是 Meta Learning 在监督学习领域的应用。Meta Learning,又称为learning to learn,该算法旨在让模型学会“学习”,能够处理类型相似的任务 ...
论文信息:Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems. 2017 ...
论文:《DPGN: Distribution Propagation Graph Network for Few-shot Learning》,CVPR2020 代码:https://github.com/megvii-research/DPGN 一、概述 在给定少量标注数据 ...
Few-Shot/One-Shot Learning指的是小样本学习,目的是克服机器学习中训练模型需要海量数据的问题,期望通过少量数据即可获得足够的知识。 Matching Networks for One Shot Learning 论文将普通神经网络学习慢的问题归结为模型是由参数 ...
小样本学习 小样本学习旨在解决在数据有限的机器学习任务。 小样本学习的核心问题是经验风险最小化是不可靠的。 什么是小样本学习 Machine Learning : A computer program is said to learn from experience E ...
一、参考资料: https://zhuanlan.zhihu.com/p/61215293 https://www.zmonster.me/2019/12/08/few-shot-learning.html 二、论文: 1、 Metric Based 1.1 ...
纹识别、药物研发、推荐冷启动、欺诈识别等样本规模小或数据收集成本高的场景),Few-Shot Learnin ...