一、完善常用概念和细节 1、神经元模型: 之前的神经元结构都采用线上的权重w直接乘以输入数据x,用数学表达式即,但这样的结构不够完善。 完善的结构需要加上偏置,并加上激励函数。用数学公式表示为:。其中f为激励函数。 神经网络就是由以这样的神经元为基本单位构成 ...
神经网络优化问题的学习 梁子 optimzation random search 这是一种很坏的方法,这里就不进行介绍。略过。 gradient 偏导组成的向量 negative gradient is the direction of the deepest descent direction. 梯度方向的反方向就是下降最快的方向。 梯度是一种一阶线性逼近。有限差分法用来对梯度进行计算 逼近 ...
2019-05-23 09:34 0 606 推荐指数:
一、完善常用概念和细节 1、神经元模型: 之前的神经元结构都采用线上的权重w直接乘以输入数据x,用数学表达式即,但这样的结构不够完善。 完善的结构需要加上偏置,并加上激励函数。用数学公式表示为:。其中f为激励函数。 神经网络就是由以这样的神经元为基本单位构成 ...
指数衰减法: 公式代码如下: 变量含义: decayed_learning_rate:每一轮优化时使用的学习率 learning_rate:初始学习率 decay_rate:衰减系数 decay_steps:衰减速度,通常表示完整的使用一遍训练数据所需 ...
本章的主题是神经网络的学习。这里所说的“学习”是指从训练数据中自动获取最优权重参数的过程。本章中,为了使神经网络能进行学习,将导入损失函数这一指标。而学习的目的就是以该损失函数为基准,找出能使它的值达到最小的权重参数。为了找出尽可能小的损失函数的值,本章我们将介绍利用了函数斜率的梯度法 ...
神经网络+增强学习 马里奥AI实现方式探索 ——神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典的马里奥形象出现。平时我们都是人来玩马里奥游戏,能否可以让马里奥智能的自己闯关 ...
这个人总结的太好了 , 忍不住想学习一下,放到这里。 为了尊重原创作者,说明一下是转载于:http://blog.csdn.net/MyArrow/article/details/51322433 学习总结 1. 简介 神经网络和深度学习是由Michael Nielsen所写 ...
该文章转至: https://www.cnblogs.com/xlturing/p/5844555.html 马里奥AI实现方式探索 ——神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后 ...
本文总结自《Neural Networks and Deep Learning》第5章的内容。 问题引入 随着隐藏层数目的增加,分类准确率反而下降了。为什么? 消失的梯度问题(The vanishing gradient problem) 先看一组试验数据,当神经网络在训练 ...
Hopfield神经网络使用说明。 该神经网络有两个特点: 1,输出值只有0,1 2,Hopfield没有输入(input) 这里解释一下第二个特点,什么叫没有输入?因为在使用Hopfield网络的时候,多用于图像仿真,图像仿真意思就是先给你一些标准的图像, 比如1~9的数字 ...