原文:从香农熵到手推KL散度

信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性。在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似然估计推导出 KL 散度而加强我们对量化分布间相似性的理解。最后我们简要讨论了信息熵在机器学习中的应用,包括通过互信息选择决策树的特征 通过交叉熵衡量分类问题的损失和贝叶斯学习等。 信息论是应用数学 ...

2019-05-22 10:23 0 549 推荐指数:

查看详情

相对KL

1. 概述 在信息论中,相对等价于两个概率分布信息的差值,若其中一个概率分布为真实分布,另一个为理论(拟合)分布,则此时相对等于交叉与真实分布信息之差,表示使用理论分布拟合真实分布时所产生的信息损耗。 \[D_{K L}(p \| q)=\sum_{i=1}^{N}-p ...

Mon Jun 14 23:53:00 CST 2021 0 1276
交叉KL

参考:https://blog.csdn.net/b1055077005/article/details/100152102 (文中所有公式均来自该bolg,侵删) 信息奠基人香农(Shannon)认为“信息是用来消除随机不确定性的东西”,我们需要寻找一个量来衡量信息的有用程度。首先要先明确 ...

Sat Jan 04 19:04:00 CST 2020 0 1610
KL-相对

参考 在pytorch中计算KLDiv loss 注意reduction='batchmean',不然loss不仅会在batch维度上取平均,还会在概率分布的维度上取平均。具体见官方文档 ...

Fri May 15 18:37:00 CST 2020 0 1878
KL (相对

KL 又叫 相对,是衡量 两个概率分布 匹配程度的指标,KL 越大,分布差异越大,匹配越低 计算公式如下 或者 其中 p是 目标分布,或者叫被匹配的分布,或者叫模板分布,q 是去匹配的分布; 试想,p 是真实值,q 是预测值,岂不是 个 loss ...

Thu Mar 24 19:12:00 CST 2022 0 1939
、交叉KL、JS

、交叉KL、JS 一、信息量 事件发生的可能性大,信息量少;事件发生的可能性小,其信息量大。 即一条信息的信息量大小和它的不确定性有直接的关系,比如说现在在下雨,然后有个憨憨跟你说今天有雨,这对你了解获取天气的信息没有任何用处。但是有人跟你说明天可能也下雨,这条信息就比前一条 ...

Wed Nov 27 04:18:00 CST 2019 0 312
KL、交叉与极大似然 的友谊

一. 信息论背景   信息论的研究内容,是对一个信号包含信息的多少进行量化。所采用的量化指标最好满足两个条件: (1)越不可能发生的事件包含的信息量越大; (2)独立事件有增量的信息(就是几个独 ...

Mon Oct 30 00:07:00 CST 2017 0 3547
损失函数--KL与交叉

用的交叉(cross entropy)损失,并从信息论和贝叶斯两种视角阐释交叉损失的内涵。 # ...

Wed Dec 04 09:41:00 CST 2019 0 865
KL、JS和交叉

KL、JS和交叉三者都是用来衡量两个概率分布之间的差异性的指标 1. KL KL又称为相对,信息,信息增益。KL是是两个概率分布 P">P 和 Q">Q (概率分布P(x)和Q(x)) 之间差别的非对称性的度量。 KL是用来 度量使用基于 Q">Q 的编码 ...

Tue Dec 01 01:50:00 CST 2020 0 399
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM