前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲 ...
基于矩阵奇异值分解的水印算法 一.实验目的 了解基于矩阵奇异值分解的图像数字水印技术,掌握基于矩阵奇异值分解的图像水印算法原理,设计并实现一种基于矩阵奇异值分解的数字水印算法。 二.实验条件 Windows 或 操作系统 MATLAB b 图像文件 三.实验原理 .矩阵的奇异值分解 SVD 与图像矩阵的能量 矩阵的奇异值分解变换是一种正交变换,它可以将矩阵对角化。我们知道任何一个矩阵都有它的奇异值 ...
2019-05-21 00:42 0 603 推荐指数:
前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲 ...
矩阵的奇异值分解(Singular Value Decomposition,SVD)是数值计算中的精彩之处,在其它数学领域和机器学习领域得到了广泛的应用,如矩阵的广义逆,主分成分析(PCA),自然语言处理(NLP)中的潜在语义索引(Latent Semantic Indexing),推荐算法 ...
转:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 前言: PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是 ...
酉空间(也称:U空间,复内积空间):定义了复数域上的内积方式的线性空间叫做酉空间(相乘变成共轭相乘) 酉矩阵:欧氏空间(实线性空间)的正交阵的复空间的对应版本,他只是《线性代数》中的正交阵的一个推广。 相似矩阵:,酉相似:P是酉矩阵 厄米特矩阵(Hermitian Matrix,又译作 ...
奇异值分解(singular value decomposition, SVD)是一种矩阵因子分解方法,是线性代数的概念,但在统计学习中被广泛使用,成为其重要工具。 定义 (奇异值分解)矩阵的奇异值分解是指, 将一个非零的mxn实矩阵A, A∈Rmxn,表示为以下三个实矩阵乘积形式的运算,即进行 ...
矩阵SVD 奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做是对方阵在任意矩阵上的推广。Singular的意思是突出的,奇特的,非凡的,按照这样的翻译似乎也可以叫做矩阵的优值分解。 假设矩阵A是一个m*n阶的实矩阵,则存在一个分解 ...
算法的完整实现代码我已经上传到了GitHub仓库:NumericalAnalysis-Python(包括其它数值分析算法),感兴趣的童鞋可以前往查看。 1 奇异值分解(SVD) 1.1 奇异值分解 已知矩阵\(\boldsymbol{A} \in \R^{m \times n ...
有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解 ...