在建立逻辑回归模型的过程中,有一个重要的步骤——利用VIF来检验变量之间是否有多重共线性,那么多重共线性是什么,VIF又是什么呢? 大家上学的时候应该都知道线性关系:假设有n个非零向量X1,X2, …,Xn,如果存在不全等于零的常数b1, b2, …, bn使得b1X1+b2X2+b3X3+ ...
python金融风控评分卡模型和数据分析微专业课 博主亲自录制视频 :http: dwz.date b vv https: etav.github.io python vif factor python.html Colinearity is the state where two variables are highly correlated and contain similiar info ...
2019-05-19 15:50 0 4588 推荐指数:
在建立逻辑回归模型的过程中,有一个重要的步骤——利用VIF来检验变量之间是否有多重共线性,那么多重共线性是什么,VIF又是什么呢? 大家上学的时候应该都知道线性关系:假设有n个非零向量X1,X2, …,Xn,如果存在不全等于零的常数b1, b2, …, bn使得b1X1+b2X2+b3X3+ ...
然而很多时候,被筛选的特征在模型上线的预测效果并不理想,究其原因可能是由于特征筛选的偏差。 但还有一个显著的因素,就是选取特征之间之间可能存在高度的多重共线性,导致模型对测试集预测能力不佳。 为了在筛选特征之初就避免陷入这样的误区。介绍一种VIF(方差膨胀检验)方法,来对特征之间的线性相关 ...
如何理解方差膨胀因子? 多重共线性:python中利用statsmodels计算VIF和相关系数消除共线性 ...
画曼哈顿图和QQ plot 首推R包“qqman”,简约方便。下面具体介绍以下。 一、画曼哈顿图 install.packages("qqman") library(qqman) ...
方差膨胀系数(variance inflation factor,VIF)是衡量多元线性回归模型中复 (多重)共线性严重程度的一种度量。它表示回归系数估计量的方差与假设自变量间不线性相关时方差相比的比值。 多重共线性是指自变量之间存在线性相关关系,即一个自变量可以是其他一个 ...
@ 目录 ✌ 多重共线性检验-方差膨胀系数(VIF) 1、✌ 原理: 2、✌ 多重共线性: 3、✌ 检验方法: ✌ 方差膨胀系数(VIF): ✌ 相关性检验: 4、✌ 代码测试 ...
1. 模型的偏差以及方差: 模型的偏差:是一个相对来说简单的概念:训练出来的模型在训练集上的准确度。 模型的方差:模型是随机变量。设样本容量为n的训练集为随机变量的集合(X1, X2, ..., Xn),那么模型是以这些随机变量为输入的随机变量函数(其本身仍然是随机变量):F(X1, X2 ...
factor()函数创建因子 factor()函数的第一个参数必须是字符向量,通过levels参数显式设置因子水平, levels:水平,字符类型,用于设置x可能包含的唯一值,默认值是x的所有唯一值。如果x不是字符向量,那么使用as.character(x)把x转换为字符向量,然后获取x ...