有监督学习--简单线性回归模型(调用 sklearn 库代码实现)0.引入依赖1.导入数据(data.csv)2.定义损失函数3.导入机器学习库 sklearn4.测试:运行算法,从训练好的模型中提取出系数和截距5.画出拟合曲线6.附录-测试数据 有监督学习--简单线性回归模型 ...
有监督学习 简单线性回归模型 梯度下降法代码实现 .引入依赖 .导入数据 data.csv .定义损失函数 .定义模型的超参数 .定义核心梯度下降模型函数 .测试:运行梯度下降算法,计算最优的 w 和 b .画出拟合曲线 .附录 测试数据 有监督学习 简单线性回归模型 梯度下降法代码实现 .引入依赖 .导入数据 data.csv 作图如下: .定义损失函数 .定义模型的超参数 .定义核心梯度下降 ...
2019-05-18 08:14 0 909 推荐指数:
有监督学习--简单线性回归模型(调用 sklearn 库代码实现)0.引入依赖1.导入数据(data.csv)2.定义损失函数3.导入机器学习库 sklearn4.测试:运行算法,从训练好的模型中提取出系数和截距5.画出拟合曲线6.附录-测试数据 有监督学习--简单线性回归模型 ...
有监督学习--简单线性回归模型(最小二乘法代码实现)0.引入依赖1.导入数据(data.csv)2.定义损失函数3.定义模型拟合函数4.测试:运行最小二乘算法,计算 w 和 b5.画出拟合曲线6.附录-测试数据 有监督学习--简单线性回归模型(最小二乘法代码实现) 0.引入依赖 ...
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label ...
一、机器学习概述: 1. 学习动机: 机器学习已经在不知不觉中渗透到人们生产和生活中的各个领域,如邮箱自动过滤的垃圾邮件、搜索引擎对链接的智能排序、产品广告的个性化推荐等; 机器学习横跨计算机科学、工程技术和统计学等多个学科,需要融合多学科的专业只是,也同样可以作为实际工具应用到 ...
看了coursea的机器学习课,知道了梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic ...
线性回归 首先要明白什么是回归。回归的目的是通过几个已知数据来预测另一个数值型数据的目标值。 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值。这一计算公式称为回归方程,得到这个方程的过程就称为 ...
四、逻辑回归 5、梯度下降法 (1)梯度解释 偏导数:简单来说是对于一个多元函数,选定一个自变量并让其他自变量保持不变,只考察因变量与选定自变量的变化关系。 梯度:梯度的本意是一个向量,由函数对每个参数的偏导组成,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处 ...
转自穆晨 阅读目录 前言 基本线性回归解决方案 - 最小二乘法 最小二乘法的具体实现 局部加权线性回归 岭回归 具体方案的制定 小结 回到顶部 前言 本文将系统的介绍机器学习中监督学习的回归部分,系统 ...