方法1:无监督,不使用额外的标注数据 average word vectors:简单的对句子中的所有词向量取平均,是一种简单有效的方法, 缺点:没有考虑到单词的顺序,只对15个字以内的短句子比较有效,丢掉了词与词间的相关意思,无法更精细的表达句子与句子之间的关系 ...
总览 .基于语料库 词袋模型 VSM LSA PLSA LDA 神经网络 搜索引擎 .基于字符串 基于字符 基于词语 .基于世界知识 基于本体 基于网络知识 .其他方法 句法分析 混合方式 参考文献: 文本相似度计算方法研究综述 Review of Studies on Text Similarity Measures ...
2019-05-15 14:49 0 561 推荐指数:
方法1:无监督,不使用额外的标注数据 average word vectors:简单的对句子中的所有词向量取平均,是一种简单有效的方法, 缺点:没有考虑到单词的顺序,只对15个字以内的短句子比较有效,丢掉了词与词间的相关意思,无法更精细的表达句子与句子之间的关系 ...
摘自:http://www.programcreek.com/java-api-examples/index.php?source_dir=textmining-master/src/com/gta/ ...
参考:python文本相似度计算 原始语料格式:一个文件,一篇文章。 原始语料格式如下示例: ...
短文本的相似度计算方法可以分为两大类:基于深度学习的方法和基于非深度学习的方法。科研方面基本都是从深度学习方面入手,但个人觉得想把单语言的短文本相似度计算给做出花来比较难,相对而言基于深度学习的跨语言相似度计算稍微好点。工程方面多半不用深度学习的方法,主要是获取带标记的语比较 ...
转载请注明出处: http://blog.csdn.net/u013074302/article/details/76422551 导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下 ...
0 引言 在自然语言处理任务中,我们经常需要判断两篇文档是否相似、计算两篇文档的相似程度。比如,基于聚类算法发现微博热点话题时,我们需要度量各篇文本的内容相似度,然后让内容足够相似的微博聚成一个簇;在问答系统中,我们会准备一些经典问题和对应的答案,当用户的问题和经典问题很相似时,系统直接返回 ...
在工作中一直使用余弦相似度算法计算两段文本的相似度和两个用户的相似度。一直弄不明白多维的余弦相似度公式是怎么推导来的。今天终于花费时间把公式推导出来,其实很简单,都是高中学过的知识,只是很多年没用了,都还给老师了。本文还通过一个例子演示如果使用余弦相似度计算两段文本的相似度。 余弦函数 ...
参考: 文本比较算法Ⅰ——LD算法 文本比较算法Ⅱ——Needleman/Wunsch算法 文本比较算法Ⅲ——计算文本的相似度 文本比较算法Ⅳ——Nakatsu算法 目录: 问题 LD算法 Needleman/Wunsch算法 Nakatsu算法 ...