https://zhuanlan.zhihu.com/p/65377955 分组卷积:把特征图分成g组,分别用g组卷积核进行卷积然后在通道数相加 深度可分离卷积将卷积操作中的滤波和维数变换分开成两组卷积 ...
tensorflow 之tf.nn.depthwise conv d and separable conv d实现及原理 https: github.com tensorflow tensorflow issues 这里暂时看各种框架api实现,相比于普通卷积 卷积操作详解 的高效实现,分组卷积怎么高效实现待研究 A normal convolutional layer. Yellow bloc ...
2019-05-14 16:33 0 510 推荐指数:
https://zhuanlan.zhihu.com/p/65377955 分组卷积:把特征图分成g组,分别用g组卷积核进行卷积然后在通道数相加 深度可分离卷积将卷积操作中的滤波和维数变换分开成两组卷积 ...
1. 深度可分离卷积(depthwise separable convolution) 在可分离卷积(separable convolution)中,通常将卷积操作拆分成多个步骤。而在神经网络中通常使用的就是深度可分离卷积(depthwise separable convolution ...
按照普通卷积-深度卷积-深度可分离卷积的思路总结。 depthwise_conv2d来源于深度可分离卷积,如下论文: Xception: Deep Learning with Depthwise Separable Convolutions 函数定义 ...
以[3,64,64]的input为例,假设我们要得到[4,64,64]的output.以3x3卷积核为例. 常规的卷及操作如下图所示: 参数量共计3 x 3 x 3 x 4 = 108. 深度可分离卷积可分为2个部分 depthwise convolution pointwise ...
可分离卷积 任何看过MobileNet架构的人都会遇到可分离卷积(separable convolutions)这个概念。但什么是“可分离卷积”,它与标准的卷积又有什么区别?可分离卷积主要有两种类型:空间可分离卷积和深度可分离卷积。 1. 空间可分离卷积 从概念上讲,这是两者中较容易的一个 ...
常规卷积 常规卷积中,连接的上一层一般具有多个通道(这里假设为n个通道),因此在做卷积时,一个滤波器(filter)必须具有n个卷积核(kernel)来与之对应。一个滤波器完成一次卷积,实际上是多个卷积核与上一层对应通道的特征图进行卷积后,再进行相加,从而输出下一层的一个通道特征图。在下一层中 ...
1、深度可分离卷积 Depthwise Separable Convolution (一)结构 实质上是将标准卷积分成了两步:depthwise卷积和pointwise卷积。 标准卷积: depthwise卷积: pointwise卷积: 2、代码实现 [32 ...
论文原址:MobileNets v1 TensorFlow实现:mobilenet_v1.py TensorFlow预训练模型:mobilenet_v1.md 一、深度可分离卷积 标准的卷积过程可以看上图,一个2×2的卷积核在卷积时,对应图像区域中的所有通道均被同时考虑,问题在于 ...