Caffe3——ImageNet数据集创建lmdb类型的数据 ImageNet数据集和cifar,mnist数据集最大的不同,就是数据量特别大;单张图片尺寸大,训练样本个数多;面对如此大的数据集,在转换成lmdb文件时;使用了很多新的类型对象。 1,动态扩容的数组“vector”,动态地添加 ...
本文主要介绍如何在caffe框架下生成LMDB。其中包含了两个任务的LMDB生成方法,一种是分类,另外一种是检测。 分类任务 第一步 生成train.txt和test.txt文件文件 对于一个监督学习而言,通常具有训练集 train data文件夹 和测试集 test data文件夹 ,如下图所示 而多分类问题,train data文件夹的子目录下,有会各个类别的文件夹,里面放着归属同一类的图片数 ...
2019-05-10 10:38 0 1498 推荐指数:
Caffe3——ImageNet数据集创建lmdb类型的数据 ImageNet数据集和cifar,mnist数据集最大的不同,就是数据量特别大;单张图片尺寸大,训练样本个数多;面对如此大的数据集,在转换成lmdb文件时;使用了很多新的类型对象。 1,动态扩容的数组“vector”,动态地添加 ...
Caffe1——Mnist数据集创建lmdb或leveldb类型的数据 Leveldb和lmdb简单介绍 Caffe生成的数据分为2种格式:Lmdb和Leveldb。它们都是键/值对(Key/Value Pair)嵌入式数据库管理系统编程库。虽然lmdb的内存消耗是leveldb的1.1倍 ...
Caffe2——cifar10数据集创建lmdb或leveldb类型的数据 cifar10数据集和mnist数据集存储方式不同,cifar10数据集把标签和图像数据以bin文件的方式存放在同一个文件内,这种存放方式使得每个子cifar数据bin文件的结构相同,所以cifar转换数据代码 ...
默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可)。即训练数据集:/data/train/0、/data/train ...
\imagenet \readme.md进行理解。 1 生成LmDB格式文件 caffe中通过图像 ...
Wider Face标注转VOC格式: caffe 将三通道或四通道图片转换为lmdb格式,将标签(单通道灰度图)转换为lmdb格式 ...
要训练ssd基本都是在liu wei框架下改,生成lmdb这一关照葫芦画瓢总遇坑,记录之: 1. labelmap_voc.prototxt要根据自己的分类修改,比如人脸检测改成这样: 这里只有两类:背景、脸,因此训练的时候也要记得num_classes改成2(20分类的voc ...
参考博客: http://blog.csdn.net/jacke121/article/details/78160398 以视网膜血管分割的数据集为例: 训练样本: 训练标签: 标签图的制作依据voc数据集中的样例,将被检测的目标改为voc中的一类。 将用ps软件制作 ...