原帖地址:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据 ...
将由以下几个部分介绍PCA相关知识: 一 什么是PCA 二 PCA的目的是什么 三 通俗理解PCA 四 预备知识 五 PCA的数学原理 六 python代码示例 一 什么是PCA PCA: 全名 Principal components analysis,主成分分析。主要用于降维,保留低阶主成分,忽略高阶主成分。 二 PCA的目的是什么 在机器学习中降维,降低特征复杂度 提取主要特征信息 去除特征 ...
2019-05-09 15:26 0 737 推荐指数:
原帖地址:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据 ...
PCA(Principle Component Analysis)主成分分析是广泛使用的降维算法,由PCA的名字就可以知道,PCA的主要目标是把数据维度降下来,使得减少数据冗余,降低数据处理带来的计算资源消耗。 1 PCA原理 PCA的基本思想是将数据的最主要成分提取出来代替原始数据,也就 ...
原文链接 从高数原理推导出的PCA降维 【机器学习】降维-PCA PCA(Principal Component Analysis) 是一种常见的数据分析方式,常用于高维数据的降维,可用于提取数据的主要特征分量。 PCA 的数学推导可以从最大可分型和最近重构性两方面进行 ...
本文主要基于同名的两篇外文参考文献A Tutorial on Principal Component Analysis。 PCA,亦即主成分分析,主要用于对特征进行降维。如果数据的特征数非常多,我们可以认为其中只有一部分特征是真正我们感兴趣和有意义的,而其他特征或者是噪音,或者和别的特征 ...
原文: https://zhuanlan.zhihu.com/p/26951643 在多元统计分析中,主成分分析(Principal components analysis,PCA)是一种分析、简化数据集的技术。主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大 ...
PCA主成分分析法的数据主成分分析过程及python原理实现 1、对于主成分分析法,在求得第一主成分之后,如果需要求取下一个主成分,则需要将原来数据把第一主成分去掉以后再求取新的数据X’的第一主成分,即为原来数据X的第二主成分,循环往复即可。 2、利用PCA算法的原理进行数据的降维,其计算 ...
1、从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1 图2 如上图1所示 ...
一、简介 PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像。这时,我们通常的方法 ...