调用自己写的朴素贝叶斯函数正确率是84.12%,调用sklearn中的BernoulliNB函数,正确率是84.27% 调用sklearn中的BernoulliNB函数的代码如下: 结果截屏: 优化:加入主成分分析方法,进行降维操作,代码如下: 结果截屏: 待修改中 ...
转载: https: zhuanlan.zhihu.com p 菊安酱的机器学习第三期 代码来自:https: github.com WenDesi lihang book algorithm https: blog.csdn.net taiji article details 贝叶斯: 首先,贝叶斯分类算法是统计学中的一种概率分类方法,朴素贝叶斯分类是贝叶斯分类中的一种,其分类原理就是利用贝叶斯 ...
2019-05-08 16:29 0 1504 推荐指数:
调用自己写的朴素贝叶斯函数正确率是84.12%,调用sklearn中的BernoulliNB函数,正确率是84.27% 调用sklearn中的BernoulliNB函数的代码如下: 结果截屏: 优化:加入主成分分析方法,进行降维操作,代码如下: 结果截屏: 待修改中 ...
多种贝叶斯模型构建及文本分类的实现 作者:白宁超 2015年9月29日11:10:02 摘要:当前数据挖掘技术使用最为广泛的莫过于文本挖掘领域,包括领域本体构建、短文本实体抽取以及代码的语义级构件方法研究。常用的数据挖掘功能包括分类、聚类、预测和关联四大模型。本文针对四大模型 ...
P(y|X)=P(y)*P(X|y)/P(X) 样本中的属性相互独立; 原问题的等价问题为: 数据处理为防止P(y)*P(X|y)的值下溢,对原问题取对数,即: 注意:若某属性值在训练集中没有与某个类同时出现过,则直接P(y)或P(X|y)可能为 ...
一、算法说明 为了便于计算类条件概率\(P(x|c)\),朴素贝叶斯算法作了一个关键的假设:对已知类别,假设所有属性相互独立。 当使用训练完的特征向量对新样本进行测试时,由于概率是多个很小的相乘所得,可能会出现下溢出,故对乘积取自然对数解决这个问题。 在大多数朴素贝叶斯分类器中计 ...
MNIST数据集包含了70000张0~9的手写数字图像。 一、准备工作:导入MNIST数据集 fatch_openml用来加载数据集,所加载的数据集是一个key-value的字典结构 输入:mnist.keys() 可以看到字典的键值包括:dict_keys(['data ...
朴素贝叶斯假设各属性间相互独立,直接从已有样本中计算各种概率,以贝叶斯方程推导出预测样本的分类。 为了处理预测时样本的(类别,属性值)对未在训练样本出现,从而导致概率为0的情况,使用拉普拉斯修正(假设属性值与类别均匀分布)。 代码及注释如下: 一、离散值 1,朴素贝叶斯算法计算相关参数 ...
. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法。 概率p与因变量往往是非线性的,为了解决该类问题,我们引入了logit变换,使得logit(p ...
一、贝叶斯决策 贝叶斯决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率已知的理想情形下,贝叶斯考虑如何基于这些概率和误判损失来选择最优的类别标记。 朴素贝叶斯分类算法是基于贝叶斯定理与特征条件独立假设的分类方法。 1、条件概率 概率指的是某一 ...