现如今各种APP、微信订阅号、微博、购物网站等网站都允许用户发表一些个人看法、意见、态度、评价、立场等信息。针对这些数据,我们可以利用情感分析技术对其进行分析,总结出大量的有价值信息。例如对商品评论的分析,可以了解用户对商品的满意度,进而改进产品;通过对一个人分布内容的分析,了解他的情绪变化 ...
现如今各种APP、微信订阅号、微博、购物网站等网站都允许用户发表一些个人看法、意见、态度、评价、立场等信息。针对这些数据,我们可以利用情感分析技术对其进行分析,总结出大量的有价值信息。例如对商品评论的分析,可以了解用户对商品的满意度,进而改进产品;通过对一个人分布内容的分析,了解他的情绪变化 ...
电商评论数据聚类实验报告——冯煜博 目录 实验目的 整体思路 数据介绍 代码与实验步骤 4.1 爬虫代码 4.2 数据清洗 4.3 分词 4.4 去停用词 4.5 计算TF-IDF词频与聚类算法应用 4.6 生成词云图 实验结果 5.1 词云图 5.2 聚类结果分析 ...
来自:Python数据分析与挖掘实战——张良均著 1. 分析方法与过程 本次建模针对京东商城上“美的”品牌热水器的消费者评论数据,在对文本进行基本的机器预处理、中文分词、停用词过滤后,通过建立包括栈式自编码深度学习、语义网络与LDA主题模型等多种数据挖掘模型,实现对文本评论数据的倾向性判断 ...
一、大规模并发带来的挑战 在过去的工作中,我曾经面对过5w每秒的高并发秒杀功能,在这个过程中,整个Web系统遇到了很多的问题和挑战。如果Web系统不做针对性的优化,会轻而易举地陷入到异常状态。我们现 ...
一、大规模并发带来的挑战 在过去的工作中,我曾经面对过5w每秒的高并发秒杀功能,在这个过程中,整个Web系统遇到了很多的问题和挑战。如果Web系统不做针对性的优化,会轻而易举地陷入到异常状态。我们现 ...
本节涉及自然语言处理(NLP),具体涉及文本数据采集、预处理、分词、去停用词、词频分析、LDA主题模型 代码部分 主题分析结果 Ref: 用 Python 实现 LDA 《数据分析与挖掘实战》:源代码及数据需要可自取:https ...
抢购、秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个: 1 高并发对数据库产生的压力 2 竞争状态下如何解决库存的正确减少("超卖"问题) 对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis。 重点在于第二个问题 常规写法: 查询出对应商品的库存 ...
本篇文章介绍了ThinkPHP使用Redis实现电商秒杀的处理方法,具有一定的参考价值,希望对学习ThinkPHP的朋友有帮助! TP5使用Redis处理电商秒杀 1、首先在TP5中创建抢购活动所需要的Redis类库文件,代码如下: <php ...