BERT、RoBerta、ERNIE模型对比和改进点总结 1、BERT总结 首先BERT是transformers的encoder部分,BERT有两大训练任务分别是: mask lm:给定一句话,随机抹去这句话中的一个或几个词,要求根据剩余词汇预测被抹去的几个词分别 ...
目前效果较好的大部分的nlp任务都会应用预训练语言模型的迁移知识,主要是采用两阶段的模型。第一阶段进行预训练,一般是训练一个语言模型。最出名的是BERT,BERT的预训练阶段包括两个任务,一个是Masked Language Model,还有一个是Next Sentence Prediction。通过预训练能够利用海量的无标注的语料,以从中抽取出语言学特征,并在第二阶段结合具体任务,把这些从海量无 ...
2019-04-27 18:53 0 610 推荐指数:
BERT、RoBerta、ERNIE模型对比和改进点总结 1、BERT总结 首先BERT是transformers的encoder部分,BERT有两大训练任务分别是: mask lm:给定一句话,随机抹去这句话中的一个或几个词,要求根据剩余词汇预测被抹去的几个词分别 ...
主要是对 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding提出的BERT 清华和华为提出的ERNIE: Enhanced Language Representation ...
Transformer: https://jalammar.github.io/illustrated-transformer/ BERT: https://arxiv.org/pdf/1810.04805.pdf 进化史:https://zhuanlan.zhihu.com/p ...
Contextualized Word Embedding 同样的单词有不同的意思,比如下面的几个句子,同样有 “bank” ,却有着不同的意思。但是用训练出来的 Word2Vec 得到 “bank ...
一、BERT-wwm wwm是Whole Word Masking(对全词进行Mask),它相比于Bert的改进是用Mask标签替换一个完整的词而不是子词,中文和英文不同,英文中最小的Token就是一个单词,而中文中最小的Token却是字,词是由一个或多个字组成,且每个词之间没有明显的分隔,包含 ...
2019年7月,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型, 它利用百度海量数据和飞桨(PaddlePaddle)多机多卡高效训练优势,通过深度神经网络与多任务学习等技术,持续学习海量数据和知识。基于该框架的艾尼(ERNIE)预 ...
随着bert在NLP各种任务上取得骄人的战绩,预训练模型在这不到一年的时间内得到了很大的发展,本系列的文章主要是简单回顾下在bert之后有哪些比较有名的预训练模型,这一期先介绍几个国内开源的预训练模型。 一,ERNIE(清华大学&华为诺亚) 论文:ERNIE: Enhanced ...