主要内容 1.TPR、FPR、precision、recall、accuracy、ROC、AUC概念介绍 2.ROC曲线如何通过TPR、FPR得到 3.用sklearn.metric 如何计算TPR、FPR得到ROC曲线。用sklearn.metric 如何计算AUC ...
针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision Recall F score F measure TPR FPR TNR FNR AUCAccuracy 真实结果 预测结果 TP 真阳性 FP 假阳性 FN 假阴性 TN 真阴性 TP True Positive :预测结果为正类,实际上就是正类 FP False Positive :预测结果为正类,实际上是反类 FN ...
2019-04-24 19:22 0 1168 推荐指数:
主要内容 1.TPR、FPR、precision、recall、accuracy、ROC、AUC概念介绍 2.ROC曲线如何通过TPR、FPR得到 3.用sklearn.metric 如何计算TPR、FPR得到ROC曲线。用sklearn.metric 如何计算AUC ...
记正样本为P,负样本为N,下表比较完整地总结了准确率accuracy、精度precision、召回率recall、F1-score等评价指标的计算方式: (右键点击在新页面打开,可查看清晰图像) 简单版: ******************************************************************** ...
目录 结果表示方法 常规指标的意义与计算方式 ROC和AUC 结果表示方法 TP – True Positive FN – False Negative TN – True Negative FP – False Positive ...
最近做了一些分类模型,所以打算对分类模型常用的评价指标做一些记录,说一下自己的理解。使用何种评价指标,完全取决于应用场景及数据分析人员关注点,不同评价指标之间并没有优劣之分,只是各指标侧重反映的信息不同。为了便于后续的说明,先建立一个二分类的混淆矩阵 ,以下各参数的说明都是针对二元分类 ...
原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注意本文针对二元分类器!) 1、混淆矩阵 True Positive(真正,TP):将正类预测 ...
特异度(specificity)与灵敏度(sensitivity) https://www.jianshu.com/p/7919ef304b19 查全率(Recall),查准率(Precision),灵敏性(Sensitivity),特异性(Specificity ...
轉自 https://blog.csdn.net/sinat_28576553/article/details/80258619 四个基本概念TP、True Positive 真阳性:预测 ...
自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召回率(Recall)和F1-Measure。 本文将简单介绍其中几个概念。中文中这几个评价指标 ...