Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定 ...
Fast Neural Architecture Search of Compact Semantic Segmentation Modelsvia Auxiliary Cells : : Paper:https: arxiv.org pdf . .pdf 在过去的许多年,大家一直认为网络结构的设计是人类的事情。但是,近些年 NAS 的发展,打破了这种观念,用自动化的方法在给定的数据上设计合适的网 ...
2019-04-24 14:51 0 632 推荐指数:
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定 ...
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:45:44 Paper:https://arxiv.org/pdf/1901.02985 ...
Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/content_ECCV_2018/papers ...
Summary 本文提出超越神经架构搜索(NAS)的高效神经架构搜索(ENAS),这是一种经济的自动化模型设计方法,通过强制所有子模型共享权重从而提升了NAS的效率,克服了NAS算力成本巨大且耗时的 ...
论文地址:https://arxiv.org/abs/1611.01578 1. 论文思想 强化学习,用一个RNN学一个网络参数的序列,然后将其转换成网络,然后训练,得到一个反馈,这个反馈作用于RNN网络,用于生成新的序列。 2. 整体架构 3. RNN网络 4. 具体实现 ...
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的。在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率。 在 CIFAR-10数据集上,基于本文提出的方法生成的模型在测试集上得 ...
图森和CMU的合作工作。 论文链接[https://arxiv.org/abs/1702.08502](https://arxiv.org/abs/1702.08502) 主要提出DUC(dense upsampling convolution)和HDC(hybrid dilated ...
Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun 本文的出发点是做Instance-aware Semantic ...