原文:python——矩阵的奇异值分解,对图像进行SVD

矩阵SVD 奇异值分解 Singular Value Decomposition 是一种重要的矩阵分解方法,可以看做是对方阵在任意矩阵上的推广。Singular的意思是突出的,奇特的,非凡的,按照这样的翻译似乎也可以叫做矩阵的优值分解。 假设矩阵A是一个m n阶的实矩阵,则存在一个分解使得: 其中,是一个对角阵,只有对角线上面有元素,对角先上面的元素称为矩阵A的奇异值,通常将其进行从大到小排列,在 ...

2019-04-23 20:58 0 2502 推荐指数:

查看详情

矩阵奇异值分解(SVD)及其应用

前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征分解的一种解释。特征奇异在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲 ...

Thu Sep 13 04:09:00 CST 2018 2 4026
矩阵奇异值分解SVD)(理论)

  矩阵奇异值分解(Singular Value Decomposition,SVD)是数值计算中的精彩之处,在其它数学领域和机器学习领域得到了广泛的应用,如矩阵的广义逆,主分成分析(PCA),自然语言处理(NLP)中的潜在语义索引(Latent Semantic Indexing),推荐算法 ...

Mon Dec 11 23:51:00 CST 2017 0 4218
强大的矩阵奇异值分解(SVD)

转:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 前言: PCA的实现一般有两种,一种是用特征分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是 ...

Wed Aug 09 03:10:00 CST 2017 1 3195
利用奇异值分解(SVD)进行图像压缩-python实现

首先要声明,图片的算法有很多,如JPEG算法,SVD对图片的压缩可能并不是最佳选择,这里主要说明SVD可以降维 相对于PAC(主成分分析),SVD奇异值分解)对数据的列和行都进行了降维,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。一张 ...

Sat Dec 22 03:06:00 CST 2018 0 602
SVD奇异值分解Python实现

注:在《SVD奇异值分解)小结 》中分享了SVD原理,但其中只是利用了numpy.linalg.svd函数应用了它,并没有提到如何自己编写代码实现它,在这里,我再分享一下如何自已写一个SVD函数。但是这里会利用到SVD的原理,如果大家还不明白它的原理,可以去看看《SVD奇异值分解)小结 ...

Mon Dec 03 23:02:00 CST 2018 16 15005
奇异值分解SVD

0 - 特征分解(EVD) 奇异值分解之前需要用到特征分解,回顾一下特征分解。 假设$A_{m \times m}$是一个是对称矩阵($A=A^T$),则可以被分解为如下形式, $$A_{m\times m}=Q_{m\times m}\Sigma_{m\times m} Q_{m ...

Sun Oct 20 22:57:00 CST 2019 0 404
奇异值分解SVD

奇异值分解   特征分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵。  奇异值分解基本定理:若 $ A$ 为 $ m \times n$ 实矩阵, 则 $ A$ 的奇异值分解存在   $A=U \Sigma V^{T ...

Sun Oct 03 00:35:00 CST 2021 1 150
奇异值分解(SVD)

奇异值分解(SVD) 特征与特征向量 对于一个实对称矩阵\(A\in R^{n\times n}\),如果存在\(x\in R^n\)和\(\lambda \in R\)满足: \[\begin{align} Ax=\lambda x \end{align} \] 则我们说 ...

Mon Nov 08 17:47:00 CST 2021 0 122
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM